यदि अतिपरवलय $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$ पर दो स्पर्श रेखायें इस प्रकार खींची जाती हैं कि उनकी प्रवणताओं का गुणनफल ${c^2}$ है, तो वे निम्न वक्र पर प्रतिच्छेद करती हैं

  • A

    ${y^2} + {b^2} = {c^2}({x^2} - {a^2})$

  • B

    ${y^2} + {b^2} = {c^2}({x^2} + {a^2})$

  • C

    $a{x^2} + b{y^2} = {c^2}$

  • D

    इनमें से कोई नहीं

Similar Questions

आयताकार अतिपरवलय की उत्केन्द्रता का व्युत्क्रम है

यदि  एक वृत्त एक आयताकार अतिपरवलय $xy = {c^2}$ को क्रमश: बिन्दुओं  $A, B, C$  तथा $D$ पर काटे तथा उनके प्राचल (parameter) क्रमश: ${t_1},\;{t_2},\;{t_3}$ तथा ${t_4}$ हों तो

माना $a$ तथा $b$ धनात्मक वास्तविक संख्यायें इस प्रकार है कि $a >1$ तथा $b < a$ है। माना एक बिन्दु $P$ प्रथम चतुर्थाश में अतिपरवलय पर स्थित है। माना अतिपरवलय के बिन्दु $P$ पर खींची गई स्पर्श रेखा बिन्दु $(1,0)$ से गुजरती है तथा अतिपरवलय के बिन्दु $P$ पर खींचा गया अभिलम्ब निर्देशी अक्षों पर समान अन्त: खण्ड कास्ता है। माना बिन्दु $P$ पर स्पर्श रेखा, बिन्दु $P$ पर अभिलम्ब तथा $x$-अक्ष द्वारा निर्मित त्रिभुज के क्षेत्रफल को $\Delta$ से दर्शाते है। यदि अतिपरवलय की उत्केन्द्रता को $e$ से दर्शाते है, तो निम्न में से कौनसा/कौनसे कथन सत्य होगा/होंगे ?

$(A)$ $1 < e < \sqrt{2}$

$(B)$ $\sqrt{2} < e < 2$

$(C)$ $\Delta=a^4$

$(D)$ $\Delta=b^4$

  • [IIT 2020]

अतिपरवलय $16{x^2} - 9{y^2} = 144$ पर कोई बिन्दु $P$  है। यदि ${S_1}$ तथा ${S_2}$ इसकी नाभियाँ हों, तो $P{S_1} - P{S_2} = $

अतिपरवलयों के शीर्षों, नाभियों के निर्देशांक, उत्केंद्रता और नाभिलंब जीवा की लंबाई ज्ञात कीजिए

$5 y^{2}-9 x^{2}=36$