10-2. Parabola, Ellipse, Hyperbola
medium

निम्नलिखित अतिपरवलयों के शीर्षों और नाभियों के निर्देशांकों, उत्केंद्रता और नाभिलंब जीवा की लंबाई ज्ञात कीजिए।

$y^{2}-16 x^{2}=16$

Option A
Option B
Option C
Option D

Solution

Dividing the equation by $16$ on both sides, we have $\frac{y^{2}}{16}-\frac{x^{2}}{1}=1$

Comparing the equation with the standard equation $\frac{y^{2}}{a^{2}}-\frac{x^{2}}{b^{2}}=1,$ we find that $a=4, b=1$ and $c=\sqrt{a^{2}+b^{2}}=\sqrt{16+1}=\sqrt{17}$

Therefore, the coordinates of the foci are $(0, \,\pm \sqrt{17})$ and that of the vertices are $(0,\,\pm 4) .$ Also,

The eccentricity $e=\frac{c}{a}=\frac{\sqrt{17}}{4} .$

The latus rectum $=\frac{2 b^{2}}{a}=\frac{1}{2}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.