If three positive numbers $a, b$ and $c$ are in $A.P.$ such that $abc\, = 8$, then the minimum possible value of $b$ is
$2$
$4^{\frac{1}{3}}$
$4^{\frac{2}{3}}$
$4$
Let $a_{1}, a_{2}, \ldots \ldots, a_{21}$ be an $A.P.$ such that $\sum_{n=1}^{20} \frac{1}{a_{n} a_{n+1}}=\frac{4}{9}$. If the sum of this AP is $189,$ then $a_{6} \mathrm{a}_{16}$ is equal to :
The sequence $\frac{5}{{\sqrt 7 }}$, $\frac{6}{{\sqrt 7 }}$, $\sqrt 7 $, ....... is
After inserting $n$, $A.M.'s$ between $2$ and $38$, the sum of the resulting progression is $200$. The value of $n$ is
If $\left\{a_{i}\right\}_{i=1}^{n}$ where $n$ is an even integer, is an arithmetic progression with common difference $1$ , and $\sum \limits_{ i =1}^{ n } a _{ i }=192, \sum \limits_{ i =1}^{ n / 2} a _{2 i }=120$, then $n$ is equal to
Find the sum of all two digit numbers which when divided by $4,$ yields $1$ as remainder.