- Home
- Standard 11
- Mathematics
8. Sequences and Series
normal
Let $S_n$ and $s_n$ deontes the sum of first $n$ terms of two different $A.P$. for which $\frac{{{s_n}}}{{{S_n}}} = \frac{{3n - 13}}{{7n + 13}}$ then $\frac{{{s_n}}}{{{S_{2n}}}}$
A
$\frac{{3n - 13}}{{14n + 26}}$
B
$\frac{{6n - 26}}{{17n + 13}}$
C
$\frac{{3n - 13}}{{28n + 26}}$
D
None
Solution
$\mathrm{s}_{\mathrm{n}}=\lambda\left(3 \mathrm{n}^{2}-13 \mathrm{n}\right)$
$\mathrm{s}_{\mathrm{n}}=\lambda\left(7 \mathrm{n}^{2}+13 \mathrm{n}\right)$
$\mathrm{s}_{2 \mathrm{n}}=\lambda\left(28 \mathrm{n}^{2}+26 \mathrm{n}\right)$
$\frac{s_{n}}{s_{2 n}}=\frac{7 n+13}{28 n+26}$
Standard 11
Mathematics