Let $S_n$ and  $s_n$ deontes the sum of first $n$ terms of two different $A.P$. for which $\frac{{{s_n}}}{{{S_n}}} = \frac{{3n - 13}}{{7n + 13}}$ then  $\frac{{{s_n}}}{{{S_{2n}}}}$

  • A

    $\frac{{3n - 13}}{{14n + 26}}$

  • B

    $\frac{{6n - 26}}{{17n + 13}}$

  • C

    $\frac{{3n - 13}}{{28n + 26}}$

  • D

    None

Similar Questions

The sum of the first four terms of an $A.P.$ is $56 .$ The sum of the last four terms is $112.$ If its first term is $11,$ then find the number of terms.

Let $S_n$ be the sum to n-terms of an arithmetic progression $3,7,11, \ldots \ldots$. . If $40<\left(\frac{6}{\mathrm{n}(\mathrm{n}+1)} \sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{S}_{\mathrm{k}}\right)<42$, then $\mathrm{n}$ equals

  • [JEE MAIN 2024]

Write the first five terms of the sequences whose $n^{t h}$ term is $a_{n}=(-1)^{n-1} 5^{n+1}$

Write the first five terms of the following sequence and obtain the corresponding series :

$a_{1}=-1, a_{n}=\frac{a_{n-1}}{n}, n\, \geq\, 2$

Let $\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}, \ldots$ be an $A.P.$ If $\frac{a_{1}+a_{2}+\ldots+a_{10}}{a_{1}+a_{2}+\ldots+a_{p}}=\frac{100}{p^{2}}, p \neq 10$, then $\frac{a_{11}}{a_{10}}$ is equal to :

  • [JEE MAIN 2021]