If the sum of $n$ terms of an $A.P$. is $2{n^2} + 5n$, then the ${n^{th}}$ term will be
$4n + 3$
$4n + 5$
$4n + 6$
$4n + 7$
If $a_1, a_2, a_3, .... a_{21}$ are in $A.P.$ and $a_3 + a_5 + a_{11}+a_{17} + a_{19} = 10$ then the value of $\sum\limits_{r = 1}^{21} {{a_r}} $ is
Let $3,7,11,15, \ldots, 403$ and $2,5,8,11, \ldots, 404$ be two arithmetic progressions. Then the sum, of the common terms in them, is equal to.....................
Let the sum of the first $n$ terms of a non-constant $A.P., a_1, a_2, a_3, ……$ be $50\,n\, + \,\frac{{n\,(n\, - 7)}}{2}A,$ where $A$ is a constant. If $d$ is the common difference of this $A.P.,$ then the ordered pair $(d,a_{50})$ is equal to
Three numbers are in $A.P.$ whose sum is $33$ and product is $792$, then the smallest number from these numbers is
For a series $S = 1 -2 + 3\, -\, 4 … n$ terms,
Statement $-1$ : Sum of series always dependent on the value of $n$ , i.e. whether it is even or odd.
Statement $-2$ : Sum of series is $-\frac {n}{2}$ when value of $n$ is any even integer