If the sum of $n$ terms of an $A.P$. is $2{n^2} + 5n$, then the ${n^{th}}$ term will be
$4n + 3$
$4n + 5$
$4n + 6$
$4n + 7$
If the $10^{\text {th }}$ term of an A.P. is $\frac{1}{20}$ and its $20^{\text {th }}$ term is $\frac{1}{10},$ then the sum of its first $200$ terms is
If ${a_1},\;{a_2},\;{a_3}.......{a_n}$ are in $A.P.$, where ${a_i} > 0$ for all $i$, then the value of $\frac{1}{{\sqrt {{a_1}} + \sqrt {{a_2}} }} + \frac{1}{{\sqrt {{a_2}} + \sqrt {{a_3}} }} + $ $........ + \frac{1}{{\sqrt {{a_{n - 1}}} + \sqrt {{a_n}} }} = $
If $A$ be an arithmetic mean between two numbers and $S$ be the sum of $n$ arithmetic means between the same numbers, then
Let the sum of the first $n$ terms of a non-constant $A.P., a_1, a_2, a_3, ……$ be $50\,n\, + \,\frac{{n\,(n\, - 7)}}{2}A,$ where $A$ is a constant. If $d$ is the common difference of this $A.P.,$ then the ordered pair $(d,a_{50})$ is equal to
If $^n{C_4},{\,^n}{C_5},$ and ${\,^n}{C_6},$ are in $A.P.,$ then $n$ can be