If the sum of $n$ terms of an $A.P$. is $2{n^2} + 5n$, then the ${n^{th}}$ term will be
$4n + 3$
$4n + 5$
$4n + 6$
$4n + 7$
Let $S_n$ and $s_n$ deontes the sum of first $n$ terms of two different $A.P$. for which $\frac{{{s_n}}}{{{S_n}}} = \frac{{3n - 13}}{{7n + 13}}$ then $\frac{{{s_n}}}{{{S_{2n}}}}$
The four arithmetic means between $3$ and $23$ are
The sums of $n$ terms of three $A.P.'s$ whose first term is $1$ and common differences are $1, 2, 3$ are ${S_1},\;{S_2},\;{S_3}$ respectively. The true relation is
Write the first five terms of the following sequence and obtain the corresponding series :
$a_{1}=-1, a_{n}=\frac{a_{n-1}}{n}, n\, \geq\, 2$
The sum of the common terms of the following three arithmetic progressions.
$3,7,11,15,...................,399$
$2,5,8,11,............,359$ and
$2,7,12,17,...........,197$, is equal to $................$.