यदि दो वृत्त ${(x - 1)^2} + {(y - 3)^2} = {r^2}$ तथा ${x^2} + {y^2} - 8x + 2y + 8 = 0$ दो भिन्न - भिन्न बिन्दुओं पर प्रतिच्छेद करते हों, तो                          

  • [AIEEE 2003]
  • [IIT 1989]
  • A

    $2 < r < 8$

  • B

    $r = 2$

  • C

    $r < 2$

  • D

    $r > 2$

Similar Questions

वृत्तों ${x^2} + {y^2} = 4$ और ${x^2} + {y^2} - 6x - 8y = 24$ की उभयनिष्ठ स्पर्श रेखाओं की संख्या है

  • [IIT 1998]

वृत्त ${x^2} + {y^2} = {a^2}$ पर किसी बिन्दु से दो परस्पर लम्बवत् स्पर्श रेखायें खींची जाती हैं, तो बिन्दु का बिन्दुपथ है

यदि एक वृत्त बिन्दु $(1, 2)$ से गुजरता है एवं वृत्त ${x^2} + {y^2} = 4$ को समकोण पर काटता है तो इसके केन्द्र के बिन्दुपथ का समीकरण है

दो वृत्त ${x^2} + {y^2} - 4y = 0$ व ${x^2} + {y^2} - 8y = 0$

उस वृत्त का समीकरण जो वृत्त ${x^2} + {y^2} + 14x + 6y + 2 = 0$ को लम्बवत् प्रतिच्छेदित करता है और जिसका केन्द्र $(0, 2)$ है, है