किसी वस्तु पर दो बल ${F_1}$ तथा ${F_2}$ कार्य करते हैं। एक बल दूसरे का दोगुना है तथा इनका परिणामी बड़े बल के बराबर है तो दोनों बलों के बीच कोण है
${\cos ^{ - 1}}(1/2)$
${\cos ^{ - 1}}( - 1/2)$
${\cos ^{ - 1}}( - 1/4)$
${\cos ^{ - 1}}(1/4)$
दो बल इस प्रकार हैं कि इनके योग का परिमाण $18\, N$ एवं इनका परिणामी (जिसका परिमाण $12\, N$ है) कम परिमाण के बल पर लम्बवत् है। तब बलों के परिमाण है
दो सदिशों $\overrightarrow{ A }$ तथा $\overrightarrow{ B }$ के परिमाण समान है। $(\overrightarrow{ A }+\overrightarrow{ B })$ का परिमाण $(\overrightarrow{ A }-\overrightarrow{ B })$ के परिमाण का $n$ गुना है। $\overrightarrow{ A }$ तथा $\overrightarrow{ B }$ के मध्य कोण है।
$10\, N$ के पाँच एकसमान बल एक बिन्दु पर आरोपित किये गये हैं तथा यह सभी एक ही तल में हैं। यदि उनके मध्य कोण बराबर हों तो इनका परिणामी ............... $\mathrm{N}$ होगा
यदि $\mathop A\limits^ \to = 4\hat i - 3\hat j$ तथा $\mathop B\limits^ \to = 6\hat i + 8\hat j$ तो $\mathop A\limits^ \to \, + \mathop B\limits^ \to $ का परिमाण तथा दिशा होगी