જો ત્રિકોણના બે શિરોબિંદુ અનુક્રમે $(5, -1)$ અને $( - 2, 3)$ હોય તથા લંબકેન્દ્ર $(0, 0)$ હોય તો ત્રિકોણનું ત્રીજું શિરોબિંદુ મેળવો.
$\left( {4, - 7} \right)$
$(-4, - 7)$
$(-4, 7)$
$(4, 7)$
રેખા $2x + 3y = 12$ એ $x$ - અક્ષને $A$ અને $y$ - અક્ષને $B$ બિંદુમાં મળે છે.જો બિંદુ $(5, 5)$ માંથી પસાર થતી રેખાએ $AB$ ને લંબ છે અને $x$ - અક્ષ , $y$ - અક્ષ અને $AB$ ને અનુક»મે $C, D$ અને $E$ માં મળે છે.જો $O$ એ ઊગમબિંદુ હોય તો $OCEB$ નું ક્ષેત્રફળ મેળવો.
ત્રિકોણના બે શિરોબિંદુઓ $(5, - 1)$ અને $( - 2,3)$ હોય અને લંબકેન્દ્ર ઊગમબિંદુ હોય તો ત્રીજું શિરોબિંદુ મેળવો.
બિંદુ $(2, 2)$ માંથી પસાર થતી સુરેખા એ રેખાઓ $\sqrt 3 \,x\,\, + \,\,y\,\, = \,\,0$ અને $\sqrt 3 x\, - \,\,y\,\, = \,\,0$ ને $A$ અને $B$ બિંદુ આગળ છેદે છે. રેખા $AB$ નું સમીકરણ શોધો કે જેથી ત્રિકોણ $OAB$ સમબાજુ ત્રિકોણ બને -
રેખાઓ $ax \pm by \pm c = 0$ થી બનતા સ.બા.ચનું ક્ષેત્રફળ મેળવો.
ત્રિકોણની બાજુઓનાં સમીકરણ $x - 2y = 0, 4x + 3y = 5$ અને $2x + y = 0$ છે. રેખા $3y - 4x = 0$ કયા બિંદુમાંથી પસાર થશે ?