જો પ્રકાશના વેગ $c$, પ્લાન્ક અચળાંક $h$ અને ગુરુત્વાકર્ષી અચળાંક $ G$ ને મૂળભૂત રાશિઓ તરીકે લેવામાં આવે તો સમયને આ ત્રણ રાશિઓમાં દર્શાવતા સૂત્રો મેળવો.
$T = kc ^{ x } h ^{ y } G ^{ z }$
${\left[M^{0} L^{0} T\right]=\left[L^{-1}\right]^{x} \times\left[M L^{2} T^{-1}\right]^{y} \times\left[M^{-1} L^{3} T^{-2}\right]^{z}}$
$=\left[M^{y-z} L^{x+2 y+3 z} T^{-x-y-2 z}\right]$
Comparing powers
$y-z=0$
$x+2 y+3 z=1$
$-x-y-2z=1$
$y =\frac{1}{2}, z =\frac{1}{2}, x =-\frac{5}{2}$
$T = kc ^{-\frac{5}{2}} h ^{\frac{1}{2}} B ^{\frac{1}{2}}$
$T =k \sqrt{\frac{h G}{c^{5}}}$
વિધેય $f(\theta )\, = \,1\, - \theta + \frac{{{\theta ^2}}}{{2!}} - \frac{{{\theta ^3}}}{{3!}} + \frac{{{\theta ^4}}}{{4!}} + ...$ વ્યાખ્યાયિત થાય છે તો $f(\theta )$ એ પરિમાણરહિત રાશિ હોવાથી જરૂરિયાત શું છે ?
જો ${E}, {L}, {m}$ અને ${G}$ અનુક્રમે ઉર્જા, કોણીય વેગમાન, દળ અને ગુરુત્વાકર્ષણનો અચળાંક હોય, તો સૂત્ર ${P}={EL}^{2} {m}^{-5} {G}^{-2}$ માં રહેલ રાશિ $P$ નું પરિમાણિક સૂત્ર કેવું થાય?
બર્નુલીનું સમીકરણ $P + \frac{1}{2}\rho {V^2} + \rho gh = K$ છે.તો $K/P$ નું પારિમાણીક સૂત્ર કોના જેવું હશે?
$F=\alpha t^2+\beta t$ વડે વ્યાખ્યાયિત બળ એક કણ ૫ર $t$ સમયે પ્રવર્તે છે. જો $\alpha$ અને $\beta$ અચળાંકો હોય તો . . . . . . અવયવ (૫દ) પરિમાણરહિત હશે.
અવરોધ ધરાવતા માધ્યમમાં સ્થિર સ્થિતિમાંથી નીચે પડતાં પદાર્થના વેગમાં થતો ફેરફાર $\frac{{dV}}{{dt}} = At - BV$ મુજબ આપવામાં આવે છે . તો $A$ અને $B$ નું પારિમાણિક સૂત્ર શું થાય?