If$\cos 6\theta + \cos 4\theta + \cos 2\theta + 1 = 0$, where $0 < \theta < {180^o}$, then $\theta =$
${30^o},{45^o}$
${45^o},{90^o}$
${135^o},{150^o}$
${30^o},{45^o},{90^o},{135^o},{150^o}$
Find the general solution of $\cos ec\, x=-2$
If ${\sin ^2}\theta = \frac{1}{4},$ then the most general value of $\theta $ is
Common roots of the equations $2{\sin ^2}x + {\sin ^2}2x = 2$ and $\sin 2x + \cos 2x = \tan x,$ are
If sum of all the solutions of the equation $8\cos x \cdot \left( {\cos \left( {\frac{\pi }{6} + x} \right) \cdot \cos \left( {\frac{\pi }{6} - x} \right) - \frac{1}{2}} \right) = 1$ in $\left[ {0,\pi } \right]$ is $k\pi $then $k$ is equal to :
Let $S=\{\theta \in[0,2 \pi): \tan (\pi \cos \theta)+\tan (\pi \sin \theta)=0\}$.
Then $\sum_{\theta \in S } \sin ^2\left(\theta+\frac{\pi}{4}\right)$ is equal to