કોઈ શહેર માં $25\%$ કુટુંબો પાસે ફોન છે અને $15\%$ કુટુંબો પાસે કાર છે ; $65\%$ કુટુંબો પાસે ફોન કે કાર બે માથી કઈ પણ નથી અને $2,000$ કુટુંબો પાસે કાર અને ફોને બંને છે તો નીચેના ત્રણ વિધાનો જુઓ .
$(A)\,\,\,5\%$ કુટુંબો પાસે કાર અને ફોન બંને છે
$(B)\,\,\,35\%$ કુટુંબો પાસે કાર અથવા ફોન છે.
$(C)$ શહેર માં $\,40,000$ કુટુંબો રહે છે
તો,
માત્ર $(A)$ અને $(C)$ સાચા છે.
માત્ર $(B)$ અને $(C)$ સાચા છે.
બધા $(A),$ $(B)$ અને $(C)$ સાચા છે
માત્ર $(A)$ અને $(B)$ સાચા છે.
$60$ વ્યક્તિઓના સર્વેક્ષણમાં, $25$ વ્યક્તિઓ સમાચારપત્ર વાંચતા, $26$ સમાચારપત્ર વાંચતા, $26$ સમાચારપત્ર $1$ વાંચતા, $9\,\mathrm{ H}$ અને $1$ વાંચતા, $11\,\mathrm{ H}$ અને $\mathrm{T}$ બંને વાંચતા, $8\,\mathrm{ T}$ અને $\mathrm{I}$ વાંચતા તથા $3$ તમામ સમાચારપત્ર વાંચતા માલૂમ પડ્યા. માત્ર એક જ સમાચારપત્ર વાંચનાર વ્યક્તિઓની સંખ્યા શોધો.
એક સર્વે મુજબ $63\%$ અમેરીકનને ચીઝ અને$76\%$ ને સફરજન પસંદ છે. જો $x\%$ ને ચીઝ અને સફરજન પસંદ હોય તો . . . .
એક શાળામાં $20$ શિક્ષકો ગણિત અથવા ભૌતિકવિજ્ઞાન શીખવે છે. આ શિક્ષકો પૈકી $12$ ગણિત શીખવે છે અને $4$ ભૌતિકવિજ્ઞાન અને ગણિત બંને વિષય શીખવે છે. કેટલા શિક્ષકો ભૌતિકવિજ્ઞાન શીખવતા હશે ?
ચામડીની વ્યાધિવાળી $200$ વ્યક્તિઓ છે. $120$ વ્યક્તિઓને રસાયણ $C _{1}$ અને $50$ વ્યક્તિઓને રસાયણ $C _{2}$ ની અસર માલૂમ પડી અને $30$ ને બંને રસાયણો $C _{1}$ અને $C _{2}$ ની અસર માલૂમ પડી. રસાયણ $C _{1}$ ની અસર હોય, પરંતુ રસાયણ $C _{2}$ ની અસર ન હોય તેવી વ્યક્તિઓની સંખ્યા શોધો.
એક ઉસ્ચતર માધ્યમિક શાળાના $220$ વિદ્યાર્થાઓના સર્વેક્ષણમાં, એવું જોવામાં આવ્યુ છે કે ઓછામાં ઓછા $125$ તથા વધુમા વધુ $130$ વિદ્યાથીઓ ગણિત શાસ્ત્ર ભણે છે; ઓછામાં ઓછા $85$ અને વધુમા વધુ $95$ ભૌતિકશાસ્ત્ર ભણે છે; ઓછામાં ઓછા $75$ અને વધુમા વધુ $90$ ૨સાયણશાસ્ત્ર ભણે છે; $30$ બન્ને ભૌતિકશાસ્ત્ર અને રસાયણશાસ્ત્ર ભણે છે; $50$ બન્ને રસાયણશાસ્ત્ર અને ગણિતશાસ્ર ભણે છે; $40$ બન્ને ગણિતશાસ્ર અને ભૌતિકશાસ્ત્ર ભણે છે તથા $10$ આ પૈકીના કોઈ પણ વિષયો ભણતા નથી. ધારોકે $\mathrm{m}$ અને $\mathrm{n}$ અનુક્રમે આ ત્રણે વિષયો ભણતા વિદ્યાર્થાઓની ઓછામાં ઓછી તથા વધુમાં વધુ સંખ્યા છે. તો $\mathrm{m}+\mathrm{n}=$ ...........