$60$ વ્યક્તિઓના સર્વેક્ષણમાં, $25$ વ્યક્તિઓ સમાચારપત્ર વાંચતા, $26$ સમાચારપત્ર વાંચતા, $26$ સમાચારપત્ર $1$ વાંચતા, $9\,\mathrm{ H}$ અને $1$ વાંચતા, $11\,\mathrm{ H}$ અને $\mathrm{T}$ બંને વાંચતા, $8\,\mathrm{ T}$ અને $\mathrm{I}$ વાંચતા તથા $3$ તમામ સમાચારપત્ર વાંચતા માલૂમ પડ્યા. ઓછામાં ઓછું એક સમાચારપત્ર વાંચનાર
Let $A$ be the set of people who read newspaper $H.$
Let $B$ be the of people who read newspaper $T.$
Let $C$ be the set of people who read newspaper $I.$
Accordingly, $n(A)=25, n(B)=26,$ and $n(C)=26$
$n(A \cap C)=9, n(A \cap B)=11,$ and $n(B \cap C)=8$
$n(A \cap B \cap C)=3$
Let $U$ be the set of people who took part in the survey.
Accordingly,
$n(A \cup B \cup C)=n(A)+n(B)+n(C)-n(A \cap B)-n(B \cap C)-n(C \cap A)+n(A \cap B \cap C)$
$=25+26+26-11-8-9+3$
$=52$
Hence, $52$ people read at least one of the newspapers.
સ્કુલની ત્રણ ટીમમાં $21$ ક્રિકેટમાં , $26$ હોકીમાં ,અને $29$ વિર્ધાથી ફુટબોલમાં છે.આ પૈકી $14$ હોકી અને ક્રિકેટમાં , $15$ હોકી અને ફુટબોલમાં , અને $12$ વિર્ધાથી ફુટબોલ અને ક્રિકેટમાં છે.જો $8$ વિર્ધાથી બધીજ રમતમાં હોય તો ત્રણેય ટીમમાં રહેલ કુલ વિર્ધાથીની સંખ્યા મેળવો.
હોસ્પિટલમાં $89\, \%$ દર્દીને હદયની બીમારી છે અને $98\, \%$ એ ફેફસાની બીમારી છે. જો $\mathrm{K}\, \%$ દર્દીને જો બંને પ્રકારની બીમારી હોય તો $\mathrm{K}$ ની કિમંત આપલે પૈકી ક્યાં ગણમાં શક્ય નથી.
એક બજાર-સંશોધન જૂથે $1000$ ઉપભોક્તાઓની મોજણી કરી અને શોધ્યું કે $720$ ગ્રાહકો ઉત્પાદન $\mathrm{A}$ પસંદ કરે છે અને $450$ ઉત્પાદન $\mathrm{B}$ પસંદ કરે છે. બંને ઉત્પાદન પસંદ કરનાર ઉપભોક્તાની ન્યૂનતમ સંખ્યા કેટલી હશે ?
વિદ્યાર્થીઓના એક જૂથમાં, $100$ વિદ્યાર્થીઓ હિન્દી જાણે છે, $50$ અંગ્રેજી જાણે છે અને $25$ બંને ભાષા જાણે છે. આ જૂથમાં કેટલા વિદ્યાર્થીઓ હશે ?
એક વર્ગમાં $55$ વિર્ધાથી છે.જો ગણિત પંસંદ કરલે વિર્ધાથીની સંખ્યા $23 , 24$ એ ભૈતિક વિજ્ઞાનમાં ,$19$ એ રસાયણ વિજ્ઞાનમાં ,$12$ એ ભૈતિક વિજ્ઞાન અને ગણિત, $9$ એ ગણિત અને રસાયણ વિજ્ઞાન, $7$ એ ભૈતિક વિજ્ઞાન અને રસાયણ વિજ્ઞાન ,અને $4$ વિર્ધાથી બધાજ વિષય પંસંદ કરલે છે,તો માત્ર એકજ વિષય પંસંદ કરેલ કુલ વિર્ધાથીની સંખ્યા મેળવો.