$35$ विद्यार्थियों की एक कक्षा में, $24$ क्रिकेट खेलना पसंद करते हैं और $16$ फुटबाल खेलना पसंद् करते हैं। इसके अतिरिक्त प्रत्येक विद्यार्थी कम से कम एक खेल अवश्य खेलना पसंद करता है। कितने विद्यार्थी क्रिकेट और फुटबाल दोनों खेलना पसंद करते हैं ?

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let $X$ be the set of students who like to play cricket and $Y$ be the set of students who like to play football. Then $X \cup Y$ is the set of students who like to play at least one game, and $X \cap Y$ is the set of students who like to play both games.

Given $\quad n( X )=24, n( Y )=16, n( X \cup Y )=35, n( X \cap Y )=?$

Using the formula $n( X \cup Y )=n( X )+n( Y )-n( X \cap Y ),$ we get

$35=24+16-n( X \cap Y )$

Thus, $n( X \cap Y )=5$

i.e., $\quad 5$ students like to play both games.

Similar Questions

एक विद्यालय के $20$ अध्यापक या तो गणित या भौतिकी पढ़ाते हैं, $ 12 $ गणित जबकि $4 $ दोनों विषय पढ़ाते हैं, तब केवल भौतिकी पढ़ाने वाले अध्यापकों की संख्या होगी

$70$ व्यक्तियों के समूह में, $37$ कॉफ़ी, $52$ चाय पसंद करते हैं और प्रत्येक व्यक्ति दोनों में से कम से कम एक पेय पसंद करता है, तो कितने व्यक्ति कॉफ़ी और चाय दोनों को पसंद करते हैं ?

एक विद्यालय की तीन एथलेटिक्स टीम के सदस्यों में से $ 21$  क्रिकेट टीम में, $26 $ हॉकी टीम में तथा $ 29$  फुटबाल टीम में हैं साथ ही इनमें से $14 $ हॉकी और क्रिकेट, $15$ हॉकी और फुटबाल तथा $12$  फुटबाल और क्रिकेट दोनों खेलते हैं। $8$ तीनों खेल खेलते हैं, तब तीनों एथलेटिक्स टीम के सदस्यों की कुल संख्या क्या होगी

मान लीजिए कि किसी समतल में स्थित सभी त्रिभुजों का समुच्चय सार्वत्रिक समुच्चय $U$ है। यदि $A$ उन सभी त्रिभुजों का समुच्चय है जिनमें कम से कम एक कोण $60^{\circ}$ से भिन्न है, तो $A ^{\prime}$ क्या है ?

एक कक्षा में $30$ छात्र हैं, जिनमें से $12$ सुई का काम सीखते हैं, $16$ भौतिकी लेते हैं और $18$ इतिहास लेते हैं। यदि सभी $30$ छात्र कम से कम एक विषय लेते हैं और कोई भी तीनों विषय नहीं लेता है, तो दो विषय लेने वाले छात्रों की संख्या कितनी है?