1.Set Theory
easy

$35$ વિદ્યાર્થીઓના વર્ગમાં $24$ ને ક્રિકેટ રમવું ગમે છે અને $16$ ને ફૂટબૉલ રમવું ગમે છે. દરેક વિદ્યાર્થી બે રમતોમાંથી ઓછામાં ઓછી એક રમત રમવાનું પસંદ કરે છે. ક્રિકેટ અને ફૂટબૉલ બંને રમત રમવાનું કેટલા વિદ્યાર્થીઓ પસંદ કરતા હશે ?

A

$5$

B

$5$

C

$5$

D

$5$

Solution

Let $X$ be the set of students who like to play cricket and $Y$ be the set of students who like to play football. Then $X \cup Y$ is the set of students who like to play at least one game, and $X \cap Y$ is the set of students who like to play both games.

Given $\quad n( X )=24, n( Y )=16, n( X \cup Y )=35, n( X \cap Y )=?$

Using the formula $n( X \cup Y )=n( X )+n( Y )-n( X \cap Y ),$ we get

$35=24+16-n( X \cap Y )$

Thus, $n( X \cap Y )=5$

i.e., $\quad 5$ students like to play both games.

Standard 11
Mathematics

Similar Questions

$40$ વિદ્યાર્થીઓનો એક સમૂહ $3$ વિષયો – ગણિતશાસ્ત્ર, ભૌતિકશાસ્ત્ર અને રસાયણશાસ્ત્ર ની પરીક્ષામાં ઉપસ્થિત થાય છે. એવું જોવામાં આવ્યુ છે કે બધા જ વિદ્યાર્થીઓ ઓછામાં ઓછા એક વિષયમાં ઉતીર્ણ થયા છે, $20$ વિદ્યાર્થીઓ ગણિતશાસ્ત્રમાં ઉતીર્ણ થયા છે, $25$ વિદ્યાર્થીઓ ભૌતિકશાસ્ત્રમાં ઉતીર્ણ થયા છે, $16$ વિદ્યાર્થીઓ રસાયણશાસ્ત્રમાં ઉતીર્ણ થયા છે, વધુમાં વધુ $11$ વિદ્યાર્થીઓ ગણિતશાસ્ત્ર અને ભૌતિકશાસ્ત્રમાં બંનેમાં ઉતીર્ણ થયા છે, વધુમાં વધુ $15$ વિદ્યાર્થીઓ ભૌતિકશાસ્ત્ર અને રસાયણશાસ્ન્ર માં ઉતીર્ણ થયા, વધુમાં વધુ $15$ વિદ્યાર્થીઓ ગણિતશાસ્ત્ર અને રસાયણશાસ્ત્રમાં ઉતીર્ણ થયા છે. ત્રણેય વિષયમાં ઉતીર્ણ થનાર વિદ્યાર્થીઓની મહત્તમ સંખ્યા___________ છે.

hard
(JEE MAIN-2024)

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.