In a group of students, $100$ students know Hindi, $50$ know English and $25$ know both. Each of the students knows either Hindi or English. How many students are there in the group?
Let $U$ be the set of all students in the group.
Let $E$ be the set of all students who know English.
Let $H$ be the set of all students who know Hindi.
$\therefore H \cup E=U$
Accordingly, $n(H)=100$ and $n(E)=50$
$n(H \cap E)=25$
$n(U)=n(H)+n(E)-n(H \cap E)$
$=100+50-25$
$=125$
Hence, there are $125$ students in the group.
In a class of $55$ students, the number of students studying different subjects are $23$ in Mathematics, $24$ in Physics, $19$ in Chemistry, $12$ in Mathematics and Physics, $9$ in Mathematics and Chemistry, $7$ in Physics and Chemistry and $4$ in all the three subjects. The total numbers of students who have taken exactly one subject is
In a college of $300$ students, every student reads $5$ newspaper and every newspaper is read by $60$ students. The no. of newspaper is
Let $\mathrm{U}$ be the set of all triangles in a plane. If $\mathrm{A}$ is the set of all triangles with at least one angle different from $60^{\circ},$ what is $\mathrm{A} ^{\prime} ?$
In a survey of $60$ people, it was found that $25$ people read newspaper $H , 26$ read newspaper $T, 26$ read newspaper $I, 9$ read both $H$ and $I, 11$ read both $H$ and $T,$ $8$ read both $T$ and $1,3$ read all three newspapers. Find:
the number of people who read exactly one newspaper.
There are $200$ individuals with a skin disorder, $120$ had been exposed to the chemical $C _{1}, 50$ to chemical $C _{2},$ and $30$ to both the chemicals $C _{1}$ and $C _{2} .$ Find the number of individuals exposed to
Chemical $C_{1}$ or chemical $C_{2}$