In a group of students, $100$ students know Hindi, $50$ know English and $25$ know both. Each of the students knows either Hindi or English. How many students are there in the group?
Let $U$ be the set of all students in the group.
Let $E$ be the set of all students who know English.
Let $H$ be the set of all students who know Hindi.
$\therefore H \cup E=U$
Accordingly, $n(H)=100$ and $n(E)=50$
$n(H \cap E)=25$
$n(U)=n(H)+n(E)-n(H \cap E)$
$=100+50-25$
$=125$
Hence, there are $125$ students in the group.
In a group of $70$ people, $37$ like coffee, $52$ like tea and each person likes at least one of the two drinks. How many people like both coffee and tea?
In a certain town, $25\%$ of the families own a phone and $15\%$ own a car; $65\%$ families own neither a phone nor a car and $2,000$ families own both a car and a phone. Consider the following three statements
$(A)\,\,\,5\%$ families own both a car and a phone
$(B)\,\,\,35\%$ families own either a car or a phone
$(C)\,\,\,40,000$ families live in the town
Then,
Let $X = \{ $ Ram ,Geeta, Akbar $\} $ be the set of students of Class $\mathrm{XI}$, who are in school hockey team. Let $Y = \{ {\rm{ }}$ Geeta, David, Ashok $\} $ be the set of students from Class $\mathrm{XI}$ who are in the school football team. Find $X \cup Y$ and interpret the set.
In a college of $300$ students, every student reads $5$ newspaper and every newspaper is read by $60$ students. The no. of newspaper is
In a class of $30$ pupils, $12$ take needle work, $16$ take physics and $18$ take history. If all the $30$ students take at least one subject and no one takes all three then the number of pupils taking $2$ subjects is