In a group of students, $100$ students know Hindi, $50$ know English and $25$ know both. Each of the students knows either Hindi or English. How many students are there in the group?
Let $U$ be the set of all students in the group.
Let $E$ be the set of all students who know English.
Let $H$ be the set of all students who know Hindi.
$\therefore H \cup E=U$
Accordingly, $n(H)=100$ and $n(E)=50$
$n(H \cap E)=25$
$n(U)=n(H)+n(E)-n(H \cap E)$
$=100+50-25$
$=125$
Hence, there are $125$ students in the group.
In a survey of $220$ students of a higher secondary school, it was found that at least $125$ and at most $130$ students studied Mathematics; at least $85$ and at most $95$ studied Physics; at least $75$ and at most $90$ studied Chemistry; $30$ studied both Physics and Chemistry; $50$ studied both Chemistry and Mathematics; $40$ studied both Mathematics and Physics and $10$ studied none of these subjects. Let $\mathrm{m}$ and $\mathrm{n}$ respectively be the least and the most number of students who studied all the three subjects. Then $\mathrm{m}+\mathrm{n}$ is equal to .............................
Of the members of three athletic teams in a school $21$ are in the cricket team, $26$ are in the hockey team and $29$ are in the football team. Among them, $14$ play hockey and cricket, $15$ play hockey and football, and $12$ play football and cricket. Eight play all the three games. The total number of members in the three athletic teams is
In a classroom, one-fifth of the boys leave the class and the ratio of the remaining boys to girls is $2: 3$. If further $44$ girls leave the class, then class the ratio of boys to girls is $5: 2$. How many more boys should leave the class so that the number of boys equals that of girls?
In a Mathematics test, the average marks of boys is $x \%$ and the average marks of girls is $y \%$ with $x \neq y$. If the average marks of all students is $z \%$, the ratio of the number of girls to the total number of students is
Let $X = \{ $ Ram ,Geeta, Akbar $\} $ be the set of students of Class $\mathrm{XI}$, who are in school hockey team. Let $Y = \{ {\rm{ }}$ Geeta, David, Ashok $\} $ be the set of students from Class $\mathrm{XI}$ who are in the school football team. Find $X \cup Y$ and interpret the set.