In a hostel, $60 \%$ of the students read Hindi newspaper, $40 \%$ read English newspaper and $20 \%$ read both Hindi and English newspapers. A student is selected at random. If she reads English newspaper, find the probability that she reads Hindi newspaper.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$\mathrm{P}(\mathrm{H} \cup \mathrm{E})^{\prime}=1-\mathrm{P}(\mathrm{H} \cup \mathrm{E})$

$=1-\{\mathrm{P}(\mathrm{H})+\mathrm{P}(\mathrm{E})-\mathrm{P}(\mathrm{H} \cap \mathrm{E})\}$

$=1-\left(\frac{3}{5}+\frac{2}{5}-\frac{1}{5}\right)$

$=1-\frac{4}{5}$

$=\frac{1}{5}$

Probability that a random chosen student reads Hindi newspaper, if she reads English newspaper, is given by $\mathrm{P}(\mathrm{H} | \mathrm{E})$

$\mathrm{P}(\mathrm{H} | \mathrm{E})=\frac{\mathrm{P}(\mathrm{H} \cap E)}{\mathrm{P}(\mathrm{E})}$

$=\frac{\frac{1}{5}}{\frac{2}{5}}$

$=\frac{1}{2}$

Similar Questions

Let two fair six-faced dice $A$ and $B$ be thrown simultaneously. If  $E_1$ is the event that die $A$ shows up four, $E_2 $ is the event that die $B$ shows up two and $E_3$ is the event that the sum of numbers on both dice is odd, then which of the following statements is NOT true $?$

  • [JEE MAIN 2016]

Fill in the blanks in following table :

$P(A)$ $P(B)$ $P(A \cap B)$ $P (A \cup B)$
$\frac {1}{3}$ $\frac {1}{5}$ $\frac {1}{15}$  ........

In two events $P(A \cup B) = 5/6$, $P({A^c}) = 5/6$, $P(B) = 2/3,$ then $A$ and $B$ are

Probability of solving specific problem independently by $A$ and $B$ are $\frac{1}{2}$ and $\frac{1}{3}$ respectively. If both try to solve the problem independently, find the probability that  the problem is solved.

If $P(A) = P(B) = x$ and $P(A \cap B) = P(A' \cap B') = \frac{1}{3}$, then $x = $