એક છાત્રાલયમાં $60\%$ વિદ્યાર્થીઓ હિન્દી સમાચારપત્ર વાંચે છે, $40\%$ અંગ્રેજી સમાચારપત્ર વાંચે છે અને $20\%$ હિન્દી અને અંગ્રેજી બંને સમાચારપત્ર વાંચે છે. એક વિદ્યાર્થી યાદૈચ્છિક રીતે પસંદ કરવામાં આવ્યો.જો તે અંગ્રેજી સમાચારપત્ર વાંચતો હોય, તો તે હિન્દી સમાચારપત્ર વાંચે છે તેની સંભાવના શોધો.
$\mathrm{P}(\mathrm{H} \cup \mathrm{E})^{\prime}=1-\mathrm{P}(\mathrm{H} \cup \mathrm{E})$
$=1-\{\mathrm{P}(\mathrm{H})+\mathrm{P}(\mathrm{E})-\mathrm{P}(\mathrm{H} \cap \mathrm{E})\}$
$=1-\left(\frac{3}{5}+\frac{2}{5}-\frac{1}{5}\right)$
$=1-\frac{4}{5}$
$=\frac{1}{5}$
Probability that a random chosen student reads Hindi newspaper, if she reads English newspaper, is given by $\mathrm{P}(\mathrm{H} | \mathrm{E})$
$\mathrm{P}(\mathrm{H} | \mathrm{E})=\frac{\mathrm{P}(\mathrm{H} \cap E)}{\mathrm{P}(\mathrm{E})}$
$=\frac{\frac{1}{5}}{\frac{2}{5}}$
$=\frac{1}{2}$
ભૌતિકશાસ્ત્રમાં નાપાસ થવાની શક્યતા $20\%$ છે. અને ગણિતશાસ્ત્રમાં નાપાસ થવાની શક્યતા $10\%$ છે. તો ઓછામાં ઓછા એક વિષયમાં નાપાસ હોવાની સંભાવના કેટલા ............. $\%$ થાય ?
$A$ અને $B$ બે ઘટનાઓ એવા પ્રકારની છે કે $P(A) = 0.54, P(B) = 0.69$ અને$P(A \cap B)=0.35$ $P \left( B \cap A ^{\prime}\right)$ શોધો.
જો ઘટનાઓ $A$ અને $B$ માટે $\mathrm{P}(\mathrm{A})=\frac{1}{4}, \mathrm{P}(\mathrm{B})=\frac{1}{2}$ અને $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\frac{1}{8}$ હોય, તો $P(A -$ નહિ અને $B-$ નહિ) શોધો.
ધારો કે બે ઘટના $A$ અને $B$ આપેલ છે કે જેથી બે માંથી માત્ર એક્જ બને તેની સંભાવના $\frac{2}{5}$ હોય અને $A$ અથવા $B$ ઉદભવે તેની સંભાવના $\frac{1}{2}$ હોય તો બંને એક સાથે ઉદભવે તેની સંભાવના મેળવો.
જો $ P(A) = 0.25, P(B)= 0.50 $ અને $P(A \,\cap\,B) = 0.14 $ હોય, તો $P(A\,\, \cap \,\,\overline B )$બરાબર શું થાય ?