- Home
- Standard 11
- Mathematics
एक लाटरी में एक व्यक्ति $1$ से $20$ तक की संख्याओं में से छ: भिन्न-भिन्न संख्याएँ यादृच्छया चुनता है और यदि ये चुनी गई छ: संख्याएँ उन छ: संख्याओं से मेल खाती हैं, जिन्हें लाटरी समिति ने पूर्वनिर्धारित कर रखा है, तो वह व्यक्ति इनाम जीत जाता है। लाटरी के खेल में इनाम जीतने की प्रायिकता क्या है ?
$\frac{1}{38760}$
$\frac{1}{38760}$
$\frac{1}{38760}$
$\frac{1}{38760}$
Solution
Total number of ways in which one can choose six different numbers from $1$ to $2.$
$=^{20} C_{6}=\frac{\lfloor {20}}{\lfloor {6\lfloor {20-6}}}=\frac{\lfloor {20}}{\lfloor {6\lfloor {14}}}$
$=\frac{20 \times 19 \times 18 \times 17 \times 16 \times 15}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6}$ $=38760$
Hence, there are $38760$ combinations of $6$ numbers.
Out of these combinations, one combination is already fixed by the lottery committee.
$\therefore$ Required probability of winning the prize in the game $=\frac{1}{38760}$