- Home
- Standard 11
- Mathematics
एक रिले दौड़ (relay race) में पाँच टीमों $A , B , C , D$ और $E$ ने भाग लिया।
$A , B$ और $C$ के पहले तीन स्थानों ( किसी भी क्रम) पर रहने की क्या प्रायिकता है ?
(मान लीजिए कि सभी अंतिम क्रम सम संभाव्य हैं।)
$\frac{1}{10}$
$\frac{1}{10}$
$\frac{1}{10}$
$\frac{1}{10}$
Solution
If we consider the sample space consisting of all finishing orders in the first three places, we will have $^{5} P _{3},$ i.e., $, \frac{5 \,!}{(5-3) \,!}$ $=5 \times 4 \times 3=60$ sample points, each with a probability of $\frac{1}{60}$.
$A$, $B$ and $C$ are the first three finishers.
There will be $3 \,!$ arrangements for $A, \,B$ and $C$.
Therefore, the sample points corresponding to this event will be $3 \,!$ in number.
So $P( A , \,B $ and $C$ are first three to finish) $=\frac{3\, !}{60}=\frac{6}{60}=\frac{1}{10}$