In a school there are $20$ teachers who teach mathematics or physics. Of these, $12$ teach mathematics and $4$ teach both physics and mathematics. How many teach physics ?
Let $M$ denote the set of teachers who teach mathematics and $P$ denote the set of teachers who teach physics. In the statement of the problem, the word 'or' gives us a clue of union and the word 'and' gives us a clue of intersection. We, therefore, have
$n( M \cup P )=20, n( M )=12 \text { and } n( M \cap P )=4$
We wish to determine $n( P ).$
Using the result $n( M \cup P )=n( M )+n( P )-n( M \cap P )$
we obtain $20=12+n(P)-4$
Thus $n( P )=12$
Hence $12$ teachers teach physics.
In a certain town $25\%$ families own a phone and $15\%$ own a car, $65\%$ families own neither a phone nor a car. $2000$ families own both a car and a phone. Consider the following statements in this regard:
$1$. $10\%$ families own both a car and a phone
$2$. $35\%$ families own either a car or a phone
$3$. $40,000$ families live in the town
Which of the above statements are correct
A survey shows that $63\%$ of the Americans like cheese whereas $76\%$ like apples. If $x\%$ of the Americans like both cheese and apples, then
In a classroom, one-fifth of the boys leave the class and the ratio of the remaining boys to girls is $2: 3$. If further $44$ girls leave the class, then class the ratio of boys to girls is $5: 2$. How many more boys should leave the class so that the number of boys equals that of girls?
There are $200$ individuals with a skin disorder, $120$ had been exposed to the chemical $C _{1}, 50$ to chemical $C _{2},$ and $30$ to both the chemicals $C _{1}$ and $C _{2} .$ Find the number of individuals exposed to
Chemical $C_{1}$ or chemical $C_{2}$
In a class of $55$ students, the number of students studying different subjects are $23$ in Mathematics, $24$ in Physics, $19$ in Chemistry, $12$ in Mathematics and Physics, $9$ in Mathematics and Chemistry, $7$ in Physics and Chemistry and $4$ in all the three subjects. The total numbers of students who have taken exactly one subject is