In a school there are $20$ teachers who teach mathematics or physics. Of these, $12$ teach mathematics and $4$ teach both physics and mathematics. How many teach physics ?
Let $M$ denote the set of teachers who teach mathematics and $P$ denote the set of teachers who teach physics. In the statement of the problem, the word 'or' gives us a clue of union and the word 'and' gives us a clue of intersection. We, therefore, have
$n( M \cup P )=20, n( M )=12 \text { and } n( M \cap P )=4$
We wish to determine $n( P ).$
Using the result $n( M \cup P )=n( M )+n( P )-n( M \cap P )$
we obtain $20=12+n(P)-4$
Thus $n( P )=12$
Hence $12$ teachers teach physics.
In a classroom, one-fifth of the boys leave the class and the ratio of the remaining boys to girls is $2: 3$. If further $44$ girls leave the class, then class the ratio of boys to girls is $5: 2$. How many more boys should leave the class so that the number of boys equals that of girls?
In a survey it was found that $21$ people liked product $A, 26$ liked product $B$ and $29$ liked product $C.$ If $14$ people liked products $A$ and $B, 12$ people liked products $C$ and $A, 14$ people liked products $B$ and $C$ and $8$ liked all the three products. Find how many liked product $C$ only.
Let $\mathrm{U}$ be the set of all triangles in a plane. If $\mathrm{A}$ is the set of all triangles with at least one angle different from $60^{\circ},$ what is $\mathrm{A} ^{\prime} ?$
In a survey of $220$ students of a higher secondary school, it was found that at least $125$ and at most $130$ students studied Mathematics; at least $85$ and at most $95$ studied Physics; at least $75$ and at most $90$ studied Chemistry; $30$ studied both Physics and Chemistry; $50$ studied both Chemistry and Mathematics; $40$ studied both Mathematics and Physics and $10$ studied none of these subjects. Let $\mathrm{m}$ and $\mathrm{n}$ respectively be the least and the most number of students who studied all the three subjects. Then $\mathrm{m}+\mathrm{n}$ is equal to .............................
A group of $40$ students appeared in an examination of $3$ subjects - Mathematics, Physics Chemistry. It was found that all students passed in at least one of the subjects, $20$ students passed in Mathematics, $25$ students passed in Physics, $16$ students passed in Chemistry, at most $11$ students passed in both Mathematics and Physics, at most $15$ students passed in both Physics and Chemistry, at most $15$ students passed in both Mathematics and Chemistry. The maximum number of students passed in all the three subjects is___________.