Out of $500$ car owners investigated, $400$ owned car $\mathrm{A}$ and $200$ owned car $\mathrm{B} , 50$ owned both $\mathrm{A}$ and $\mathrm{B}$ cars. Is this data correct?
Let $U$ be the set of car owners investigated, $M$ be the set of persons who owned car $A$ and $S$ be the set of persons who owned car $B.$
Given that $\quad n( U )=500, n( M )=400, n( S )=200$ and $n( S \cap M )=50$
Then $\quad n( S \cup M )=n( S )+n( M )-n( S \cap M )=200+400-50=550$
But $S \cup M \subset U$ implies $n( S \cup M ) \leq n( U )$
This is a contradiction. So, the given data is incorrect.
In a survey of $220$ students of a higher secondary school, it was found that at least $125$ and at most $130$ students studied Mathematics; at least $85$ and at most $95$ studied Physics; at least $75$ and at most $90$ studied Chemistry; $30$ studied both Physics and Chemistry; $50$ studied both Chemistry and Mathematics; $40$ studied both Mathematics and Physics and $10$ studied none of these subjects. Let $\mathrm{m}$ and $\mathrm{n}$ respectively be the least and the most number of students who studied all the three subjects. Then $\mathrm{m}+\mathrm{n}$ is equal to .............................
Of the members of three athletic teams in a school $21$ are in the cricket team, $26$ are in the hockey team and $29$ are in the football team. Among them, $14$ play hockey and cricket, $15$ play hockey and football, and $12$ play football and cricket. Eight play all the three games. The total number of members in the three athletic teams is
There are $200$ individuals with a skin disorder, $120$ had been exposed to the chemical $C _{1}, 50$ to chemical $C _{2},$ and $30$ to both the chemicals $C _{1}$ and $C _{2} .$ Find the number of individuals exposed to
Chemical $C _{1}$ but not chemical $C _{2}$
In a group of $65$ people, $40$ like cricket, $10$ like both cricket and tennis. How many like tennis only and not cricket? How many like tennis?
In a survey of $400$ students in a school, $100$ were listed as taking apple juice, $150$ as taking orange juice and $75$ were listed as taking both apple as well as orange juice. Find how many students were taking neither apple juice nor orange juice.