एक विद्यालय में $20$ अध्यापक हैं जो गणित या भौतिकी पढाते हैं। इनमें से $12$ गणित पढाते हैं और $4$ भौतिकी और गणित दोनों को पढाते हैं। कितने अध्यापक भौतिकी पढाते हैं ?
Let $M$ denote the set of teachers who teach mathematics and $P$ denote the set of teachers who teach physics. In the statement of the problem, the word 'or' gives us a clue of union and the word 'and' gives us a clue of intersection. We, therefore, have
$n( M \cup P )=20, n( M )=12 \text { and } n( M \cap P )=4$
We wish to determine $n( P ).$
Using the result $n( M \cup P )=n( M )+n( P )-n( M \cap P )$
we obtain $20=12+n(P)-4$
Thus $n( P )=12$
Hence $12$ teachers teach physics.
एक सर्वेक्षण से पता चलता है कि शहर के $63 \%$ व्यक्ति अखबार $A$ पढ़ते है जबकि $76 \%$ व्यक्ति अखबार $B$ पढ़ते है। यदि $x \%$ व्यक्ति दोनों अखबार पढ़ते है, तो $x$ का संभव मान हो सकता है
एक कमेटी में, $50$ व्यक्ति फ़्रेंच, $20$ व्यक्ति स्पेनिश और $10$ व्यक्ति स्पेनिश और फ्रेंच दोनों ही भाषाओं को बोल सकते हैं। कितने व्यक्ति इन दोनों ही भाषाओं में से कम से कम एक भाषा बोल सकते हैं ?
यदि किसी शहर के $ 10,000$ परिवार में से $ 40\%$ परिवार समाचार पत्र $A, 20\%$ समाचार पत्र $B, 10\%$ समाचार पत्र $C$ तथा $5\% $ परिवार $A$ और $B, 3\% $ परिवार $B$ और $C$ तथा $4\%$ परिवार $A $ और $C$ खरीदते है। यदि $2\%$ परिवार सभी तीन समाचार पत्र खरीदते हैं, तो उन परिवारों की संख्या क्या होगी जो केवल $A$ खरीदते हैं
$140$ विद्यार्थियों, जिनके क्रमांक $1$ से $140$ हैं, की एक कक्षा में सभी सम क्रमांक के विद्यार्थियों ने गणित विषय चुना है, उन्होंने जिनके क्रमांग $3$ से विभाजित होते हैं भौतिक शास्त्र विषय चुना है तथा उन्होंने जिनके क्रमांक $5$ से विभाजित होते हैं, रसायन शास्त्र विषय चुना है। तो उन विद्यार्थियों की संख्या, जिन्होंने इन तीन में से कोई भी विषम नहीं चुना है
एक कक्षा में यदि लड़कों की संख्या का पाँचवां हिस्सा निकल जाए तब बचे हुए लड़कों और लड़कियों की संख्या का अनुपात $2: 3$ है | यदि और $44$ लड़कियाँ कक्षा छोड़ देती हैं, तो लड़कों एवं लड़कियों का अनुपात $5 : 2$ हों जाता है । तब कितने और लड़कों के कक्षा से निकलने पर कक्षा में लड़कों और लड़कियों की संख्या बराबर हो जाएगी ?