In a group of $400$ people, $250$ can speak Hindi and $200$ can speak English. How many people can speak both Hindi and English?

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let $H$ be the set of people who speak Hindi, and E be the set of people who speak English

$\therefore n(H \cup E)=400, n(H)=250, n(E)=200$

$n(H \cap E)=?$

We know that:

$n(H \cup E)=n(H)+n( E )-n(H \cap E)$

$\therefore 400=250+200-n(H \cap E)$

$\Rightarrow 400=450-n(H \cap E)$

$\Rightarrow n(H \cap E)=450-400$

$\therefore n(H \cap E)=50$

Thus, $50$ people can speak both Hindi and English.

Similar Questions

Let $\mathrm{U}$ be the set of all triangles in a plane. If $\mathrm{A}$ is the set of all triangles with at least one angle different from $60^{\circ},$ what is $\mathrm{A} ^{\prime} ?$

In a class of $55$ students, the number of students studying different subjects are $23$ in Mathematics, $24$ in Physics, $19$ in Chemistry, $12$ in Mathematics and Physics, $9$ in Mathematics and Chemistry, $7$ in Physics and Chemistry and $4$ in all the three subjects. The total numbers of students who have taken exactly one subject is

In a committee, $50$ people speak French, $20$ speak Spanish and $10$ speak both Spanish and French. How many speak at least one of these two languages?

In a class of $140$ students numbered $1$ to $140$, all even numbered students opted Mathematics course, those whose number is divisible by $3$ opted Physics course and those whose number is divisible by $5$ opted Chemistry course. Then the number of students who did not opt for any of the three courses is

  • [JEE MAIN 2019]

In a survey of $220$ students of a higher secondary school, it was found that at least $125$ and at most $130$ students studied Mathematics; at least $85$ and at most $95$ studied Physics; at least $75$ and at most $90$ studied Chemistry; $30$ studied both Physics and Chemistry; $50$ studied both Chemistry and Mathematics; $40$ studied both Mathematics and Physics and $10$ studied none of these subjects. Let $\mathrm{m}$ and $\mathrm{n}$ respectively be the least and the most number of students who studied all the three subjects. Then $\mathrm{m}+\mathrm{n}$ is equal to .............................

  • [JEE MAIN 2024]