In a group of $400$ people, $250$ can speak Hindi and $200$ can speak English. How many people can speak both Hindi and English?

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let $H$ be the set of people who speak Hindi, and E be the set of people who speak English

$\therefore n(H \cup E)=400, n(H)=250, n(E)=200$

$n(H \cap E)=?$

We know that:

$n(H \cup E)=n(H)+n( E )-n(H \cap E)$

$\therefore 400=250+200-n(H \cap E)$

$\Rightarrow 400=450-n(H \cap E)$

$\Rightarrow n(H \cap E)=450-400$

$\therefore n(H \cap E)=50$

Thus, $50$ people can speak both Hindi and English.

Similar Questions

In a battle $70\%$ of the combatants lost one eye, $80\%$ an ear, $75\%$ an arm, $85\%$ a leg, $x\%$ lost all the four limbs. The minimum value of $x$ is

In a survey of $60$ people, it was found that $25$ people read newspaper $H , 26$ read newspaper $T, 26$ read newspaper $I, 9$ read both $H$ and $I, 11$ read both $H$ and $T,$ $8$ read both $T$ and $1,3$ read all three newspapers. Find:

the number of people who read at least one of the newspapers.

In a school there are $20$ teachers who teach mathematics or physics. Of these, $12$ teach mathematics and $4$ teach both physics and mathematics. How many teach physics ?

There are $200$ individuals with a skin disorder, $120$ had been exposed to the chemical $C _{1}, 50$ to chemical $C _{2},$ and $30$ to both the chemicals $C _{1}$ and $C _{2} .$ Find the number of individuals exposed to

Chemical $C_{1}$ or chemical $C_{2}$

There are $200$ individuals with a skin disorder, $120$ had been exposed to the chemical $C _{1}, 50$ to chemical $C _{2},$ and $30$ to both the chemicals $C _{1}$ and $C _{2} .$ Find the number of individuals exposed to

Chemical $C_{2}$ but not chemical $C_{1}$