एक तृतीय कोटि के सारणिक में, प्रथम स्तम्भ के प्रत्येक अवयव को दो पदों के योग के रुप में, द्वितीय स्तम्भ के प्रत्येक अवयव को तीन पदों के योग के रुप में तथा तृतीय स्तम्भ के प्रत्येक अवयव को चार पदों के योग के रुप में लिखा गया है, तब इस सारणिक को $ n$ विभिन्न सारणिकों के योग के रुप में लिख सकते हैं, जहाँ $n$ का मान है
$1$
$9$
$16$
$24$
$\alpha$ के लिए वह मान, जिनके लिए $\left|\begin{array}{ccc}1 & \frac{3}{2} & \alpha+\frac{3}{2} \\ 1 & \frac{1}{3} & \alpha+\frac{1}{3} \\ 2 \alpha+3 & 3 \alpha+1 & 0\end{array}\right|=0$ है, किस अंतराल में है ?
समीकरण के निकाय $x + 4y - z = 0,$ $3x - 4y - z = 0$ $x - 3y + z = 0$ के हलों की संख्या होगी
समीकरण $\left| {\,\begin{array}{*{20}{c}}a&a&x\\m&m&m\\b&x&b\end{array}\,} \right| = 0$ के मूल हैं
यदि समीकरण निकाय
$x+y+z=6$
$2 x+5 y+\alpha z=\beta$
$x+2 y+3 z=14$
के अनन्त हल है. तो $\alpha+\beta$ बराबर है
समीकरण $\left| {\,\begin{array}{*{20}{c}}0&x&{16}\\x&5&7\\0&9&x\end{array}\,} \right| = 0$ के मूल हैं