In a typical combustion engine the work done by a gas molecule is given $W =\alpha^{2} \beta e ^{\frac{-\beta x ^{2}}{ KT }}$, where $x$ is the displacement, $k$ is the Boltzmann constant and $T$ is the temperature. If $\alpha$ and $\beta$ are constants, dimensions of $\alpha$ will be
$\left[ MLT ^{-2}\right]$
$\left[ M ^{0} LT ^{0}\right]$
$\left[ M ^{2} LT ^{-2}\right]$
$\left[ MLT ^{-1}\right]$
The dimension of $\frac{1}{2} \varepsilon_0 E ^2$, where $\varepsilon_0$ is permittivity of free space and $E$ is electric field, is
Which pair has the same dimensions
The physical quantity $'$Energy Density$'$ has same dimensional formula as
If we use permittivity $ \varepsilon $, resistance $R$, gravitational constant $G$ and voltage $V$ as fundamental physical quantities, then
The potential energy of a particle varies with distance $x$ from a fixed origin as $V = \frac{{A\sqrt x }}{{x + B}}$,where
$A$ and $B$ are constants. The dimensions of $AB$ are