$m \neq n$ માટે કોઈક સમાંતર શ્રેણીનું $m$ મું પદ $n$ અને $n$ મું પદ $m$ હોય, તો તેનું $p$ મું પદ શોધો.
We have $a_{m}=a+(m-1) d=n,$ ......$(1)$
and $\quad a_{n}=a+(n-1) d=m$ .........$(2)$
Solving $(1)$ and $(2),$ we get
$(m-n) d=n-m,$ or $d=-1,$ ...........$(3)$
and $\quad a=n+m-1$ ...........$(4)$
Therefore $\quad a_{p}=a+(p-1) d$
$=n+m-1+(p-1)(-1)=n+m-p$
Hence, the $p^{\text {th }}$ term is $n+m-p$
શ્રેણી $2 + 5 + 8 +.....$ upto $50$ પદો અને શ્રેણી $3 + 5 + 7 + 9.....$ upto $60$ પદોમાં સામાન્ય પદોની સંખ્યા મેળવો
જો સમાંતર શ્રેણીનું $9^{th}$ અને $19^{th}$ મું પદ $35$ અને $75$ હોય, તો તેનું $20^{th}$ મું પદ કયું હોય ?
ધારો કે $S_n$ એ, સમાંતર શ્રેણી $3,7,11, \ldots . . .$. નાં $n$ પદોનો સરવાળો છે. જો $40<\left(\frac{6}{n(n+1)} \sum_{k=1}^n S_k\right)<42$ હોય,તો $n=$___________.
જો સમાંતર શ્રેણીનાં $p^{\text {th }}, q^{\text {th }}$ અને $r^{\text {th }}$ માં પદો અનુક્રમે $a, b, c$ હોય તો બતાવો કે, $(q-r) a+(r-p) b+(p-q) c=0$
જો સમાંતર શ્રેણી નું $p$ મું, $q$ મું , $r$ મું પદ અનુક્રમે $1/a, 1/b, 1/c$ હોય તો $ab(p - q) + bc(q - r) + ca(r - p) = …….$