$m \neq n$ માટે કોઈક સમાંતર શ્રેણીનું $m$ મું પદ $n$ અને $n$ મું પદ $m$ હોય, તો તેનું $p$ મું પદ શોધો.
We have $a_{m}=a+(m-1) d=n,$ ......$(1)$
and $\quad a_{n}=a+(n-1) d=m$ .........$(2)$
Solving $(1)$ and $(2),$ we get
$(m-n) d=n-m,$ or $d=-1,$ ...........$(3)$
and $\quad a=n+m-1$ ...........$(4)$
Therefore $\quad a_{p}=a+(p-1) d$
$=n+m-1+(p-1)(-1)=n+m-p$
Hence, the $p^{\text {th }}$ term is $n+m-p$
જો $log2, log (2^x - 1)$ અને $log (2^x + 3)$ સમાંતર શ્રેણીમાં હોય તો $x$ નું મૂલ્ય....... છે.
પ્રથમ ત્રણ પદો લખો : $a_{n}=2 n+5$
શ્રેણીઓ $4,9,14,19, \ldots . . .25$ માં પદ સુધી તથા $3,6,9,12, \ldots . . .37$ માં પદ સુધીના સામાન્ય પદોની સંખ્યા . . . . . .. છે.
જો $< {a_n} >$ એ સમાંતર શ્રેણીમાં છે અને $a_1 + a_4 + a_7 + .......+ a_{16} = 147$,હોય તો $a_1 + a_6 + a_{11} + a_{16}$ i ની કિમત મેળવો
જેના પ્રથમ પદો $1,2,3,..,10$ હોય અને સામાન્ય તફાવત $1,3,5, \ldots, 19$ હોય તેવી $10$ સમાંતર શ્રેણીઓના $12$ પદો સુધીનો સરવાળો અનુક્રમે ધારોકે $s_1, s_2, s_3, \ldots, s_{10}$ છે.તો $\sum \limits_{i=1}^{10} s_i=..........$