In an $\mathrm{A.P.}$ if $m^{\text {th }}$ term is $n$ and the $n^{\text {th }}$ term is $m,$ where $m \neq n$, find the ${p^{th}}$ term.
We have $a_{m}=a+(m-1) d=n,$ ......$(1)$
and $\quad a_{n}=a+(n-1) d=m$ .........$(2)$
Solving $(1)$ and $(2),$ we get
$(m-n) d=n-m,$ or $d=-1,$ ...........$(3)$
and $\quad a=n+m-1$ ...........$(4)$
Therefore $\quad a_{p}=a+(p-1) d$
$=n+m-1+(p-1)(-1)=n+m-p$
Hence, the $p^{\text {th }}$ term is $n+m-p$
If the sum of first $11$ terms of an $A.P.$, $a_{1} a_{2}, a_{3}, \ldots$is $0\left(\mathrm{a}_{1} \neq 0\right),$ then the sum of the $A.P.$, $a_{1}, a_{3}, a_{5}, \ldots, a_{23}$ is $k a_{1},$ where $k$ is equal to
If $a_m$ denotes the mth term of an $A.P.$ then $a_m$ =
Jairam purchased a house in Rs. $15000$ and paid Rs. $5000$ at once. Rest money he promised to pay in annual installment of Rs. $1000$ with $10\%$ per annum interest. How much money is to be paid by Jairam $\mathrm{Rs.}$ ...................
If ${a_1},\;{a_2},\;{a_3}.......{a_n}$ are in $A.P.$, where ${a_i} > 0$ for all $i$, then the value of $\frac{1}{{\sqrt {{a_1}} + \sqrt {{a_2}} }} + \frac{1}{{\sqrt {{a_2}} + \sqrt {{a_3}} }} + $ $........ + \frac{1}{{\sqrt {{a_{n - 1}}} + \sqrt {{a_n}} }} = $
Find the $17^{\text {th }}$ and $24^{\text {th }}$ term in the following sequence whose $n^{\text {th }}$ term is $a_{n}=4 n-3$