In an $A.P.,$ the first term is $2$ and the sum of the first five terms is one-fourth of the next five terms. Show that $20^{th}$ term is $-112$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

First term $=2$

Let d be the common different of the $A.P.$

Therefore, the $A.P.$ is $2,2+d, 2+2 d, 2+3 d \ldots$

Sum of first five terms $=10+10 d$

Sum of next five terms $=10+35 d$

According to the given condition,

$10+10 d=\frac{1}{4}(10+35 d)$

$\Rightarrow 40+40 d=10+35 d$

$\Rightarrow 30=-5 d$

$\Rightarrow d=-6$

$\therefore a_{20}=a+(20-1) d=2+(19)(-6)=2-114=-112$

Thus, the $20^{\text {th }}$ of the $A.P.$ is $-112$

Similar Questions

If the sum of the series $54 + 51 + 48 + .............$ is $513$, then the number of terms are

If the sum of three numbers of a arithmetic sequence is $15$ and the sum of their squares is $83$, then the numbers are

Find the sum of all two digit numbers which when divided by $4,$ yields $1$ as remainder.

Let ${a_1},{a_2},\;.\;.\;.\;.,{a_{49}}$ be in $A.P.$ such that $\mathop \sum \limits_{k = 0}^{12} {a_{4k + 1}} = 416$ and ${a_9} + {a_{43}} = 66$. If $a_1^2 + a_2^2 + \ldots + a_{17}^2 = 140m,$ then $m = \;\;..\;.\;.\;.\;$

  • [JEE MAIN 2018]

Let $a , b , c$ be in arithmetic progression. Let the centroid of the triangle with vertices $( a , c ),(2, b)$ and $(a, b)$ be $\left(\frac{10}{3}, \frac{7}{3}\right)$. If $\alpha, \beta$ are the roots of the equation $ax ^{2}+ bx +1=0$, then the value of $\alpha^{2}+\beta^{2}-\alpha \beta$ is ....... .

  • [JEE MAIN 2021]