माना कि $F_1\left(x_1, 0\right)$ और $F_2\left(x_2, 0\right)$ (जिसमें $x_1<0, x_2>0$ ) दीर्घवृत्त (ellipse) $\frac{x_2^2}{9}+\frac{y^2}{8}=1$ की नाभियाँ (Foci) हैं। माना कि एक परवलय (parabola) जिसका शीर्ष (vertex) मूलबिन्दु (origin) पर और नाभि (focus) $F_2$ पर है, दीर्घवृत्त को प्रथम चतुर्थांश (first quadrant) में $M$ पर और चतुर्थ चतुर्थांश (fourth quadrant) में $N$ पर प्रतिच्छेदित करता है।
($1$) त्रिभुज $F_1 M N$ का लंबकेन्द्र (orthocentre) है
$(A)$ $\left(-\frac{9}{10}, 0\right)$ $(B)$ $\left(\frac{2}{3}, 0\right)$ $(C)$ $\left(\frac{9}{10}, 0\right)$ $(D)$ $\left(\frac{2}{3}, \sqrt{6}\right).$
($2$) यदि दीर्घवृत्त के बिन्दुओं $M$ और $N$ पर स्परिखाएँ (tangents) $R$ पर मिलती हैं और परवलय के बिन्दु $M$ पर अभिलंब $x$-अक्ष को $Q$ पर मिलता है, तब त्रिभुज $M Q R$ के क्षेत्रफल और चतुर्भुज (quadrilateral) $M F_1 N F_2$ के क्षेत्रफल का अनुपात (ratio) है
$(A)$ $3: 4$ $(B)$ $4: 5$ $(C)$ $\sec 5: 8$ $(D)$ $2: 3$
दिये गए सवाल का जवाब दीजिये ($1$) और ($2$)
$A,B$
$A,D$
$A,C$
$A,B,D$
प्रतिबंधों को संतुष्ट करते हुए दीर्घवृत्त का समीकरण ज्ञात कीजिए
दीर्घ अक्ष की लंबाई $26,$ नाभियाँ $(±5,0)$
यदि $OB$, एक दीर्घवृत्त का अर्ध लघुअक्ष है, $F _{1}$ तथा $F _{2}$ उसकी नाभियाँ हैं तथा $F _{1} B$ तथा $F _{2} B$ के बीच का कोण एक समकोण है, तो दीर्घवृत्त की उत्केंद्रता का वर्ग है
प्रतिबंधों को संतुष्ट करते हुए दीर्घवृत्त का समीकरण ज्ञात कीजिए
दीर्घ अक्ष की लंबाई $16,$ नाभियाँ $(0,\pm 6) .$
दीर्घवृत्त $9{x^2} + 5{y^2} - 30y = 0$ की उत्केन्द्रता है
मान लीजिए कि $E$ दीर्घवृत्त (ellipse) $\frac{ x ^2}{16}+\frac{ y ^2}{9}=1$ को दर्शाता है। $E$ पर किसी भी तीन भिन्न बिन्दुओं $P , Q$ और $Q ^{\prime}$ के लिए, मान लीजिए कि $M ( P , Q ), P$ और $Q$ को मिलाने वाले रेखाखण्ड (line segment) का मध्यबिन्दु है, तथा $M \left( P , Q ^{\prime}\right), P$ और $Q ^{\prime}$ को मिलाने वाले रेखाखंड का मध्यबिन्दु है। जब $P , Q$ और $Q ^{\prime}, E$ पर परिवर्तित होते रहेते है, तब $M ( P , Q )$ और $M ( P , Q )$ के बीच की अधिकतम संभावित दूरी. . . . . .है।