माना कि $T_1$ एवं $T_2$ दीर्घवृत (ellipse) $E: \frac{x^2}{6}+\frac{y^2}{3}=1$ एवं परवलय (parabola) $P: y^2=12 x$ की दो भिन्न उभयनिष्ठ स्पर्श रेखाएं (distinct common tangents) हैं। माना कि स्पर्श रेखा $T_1, P$ एवं $E$ को क्रमशः बिन्दुओं $A_1$ एवं $A_2$ पर स्पर्श करती है और स्पर्श रेखा $T_2, P$ एवं $E$ को क्रमशः बिन्दुओं $A_4$ एवं $A_3$ पर स्पर्श करती है। तब निम्न में से कौन सा(से) कथन सत्य है(हैं)?

$(A)$ चतुर्भुज $A_1 A_2 A_3 A_4$ का क्षेत्रफल $35$ वर्ग इकाई है

$(B)$ चतुर्भुज $A_1 A_2 A_3 A_4$ का क्षेत्रफल $36$ वर्ग इकाई है

$(C)$ स्पर्श रेखाएं $T_1$ एवं $T_2, x$-अक्ष को बिंदु $(-3,0)$ पर मिलती हैं

$(D)$ स्पर्श रेखाएं $T_1$ एवं $T_2, x$-अक्ष को बिंदु $(-6,0)$ पर मिलती हैं

  • [IIT 2023]
  • [AIIMS 2017]
  • A

    $A,C$

  • B

    $A,D$

  • C

    $B,C$

  • D

    $B,D$

Similar Questions

$x$ तथा $y$ अक्ष एक दीर्यवृत्त $\frac{\left(x-x_0\right)^2}{a^2}+\frac{\left(y-y_0\right)^2}{b^2}=1, a > b$, की स्पर्श रेखाएँ हैं, तथा यह दीर्षवृत्त पहले चुर्थांश में स्थित है। मान लीजिए $F_1$ एंव $F_2$ दीर्घवृत्त के दो केन्द्रीय बिंदु $(foci)$ हैं, तथा मूल बिन्दु $O$ इस तरह है कि $O F_1 < O F_2 \mid$ अगर $O F_1 F_2$ एक समद्विबाहु त्रिभुज है, जिसमें $\angle O F_1 F_2=120^{\circ}$, तब दीर्घवृत्त की उत्तेन्द्रता $(eccentricity)$ क्या होगी ?

  • [KVPY 2021]

दीर्घवृत्त में नाभियों और शीर्षों के निर्देशांक, दीर्घ और लघु अक्ष की लंबाइयाँ, उत्केंद्रता तथा नाभिलंब जीवा की लंबाई ज्ञात कीजिए

$\frac{x^{2}}{4}+\frac{y^{2}}{25}=1$

दीर्घवृत्त $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ के व्यास $y = \frac{b}{a}x$ के संयुग्मी व्यास का समीकरण है

यदि अतिपरवलय ${x^2} - {y^2} = 9$ की एक स्पर्श जीवा $x = 9$ है, तो सम्बन्धित युगल स्पर्श रेखा $(Pair\,\, of\,\, tangents)$ का समीकरण है

  • [IIT 1999]

दीर्घवृत्त  $4{x^2} + 9{y^2} - 8x - 36y + 4 = 0$ की नाभिलम्ब जीवा है