- Home
- Standard 11
- Chemistry
जलोय विलयन में कार्बोनिक अम्ल के आयनन स्थिरांक निम्नलिखित हैं
$K_{1}=4.2 \times 10^{-7}$ तथा $K_{2}=4.8 \times 10^{-11}$
संतृप्त $0.034\, M$ कार्बोनिक अम्ल विलयन के लिए दिए गये निम्न कथनों में कौन सत्य है ?
$CO_3^{2-}$ की सांद्रता$0.034\, M.$ है
$CO_3^{2-}$की सान्द्रता $HCO_3^-.$ की सांद्रता से अधिके हे
$H^+$ तथा $HCO_3^-$ की सांद्रताएँ लगभग समान है
$H^+$ की सान्द्रता $CO_3^{2-}.$ सांद्रता से दांगुनी है।
Solution
$H_{2} C O_{3}(a q)+H_{2} O(l) \rightleftharpoons H C O_{3}(a q)+H_{3} O_{x}^{+}(a q)$
$\quad 0.034-x\quad \quad \quad \quad \quad \quad \quad x\quad \quad \quad \quad \quad x$
$K_{1}=\frac{\left.\left[H C O_{3}^{-}\right] | H_{3} O^{+}\right]}{\left|H_{2} C O_{3}\right|}$
$=\frac{x \times x}{0.034-x}$
$\Rightarrow 4.2 \times 10^{-7}=\frac{x^{2}}{0.034}$
$\Rightarrow x=1.195 \times 10^{-4}$
As $H_{2} C O_{3}$ is a weak acid so the concentration of
$H_{2} C O_{3}$ will remain 0.034 as $0.034>>x$
$x=\left[H^{+}\right]=\left[H C O_{3}\right]$
$=1.195 \times 10^{-4}$
Now, $H C O_{3}(a q)+H_{2} O(l) \rightleftharpoons C O_{3_{y}}^{2-}(a q)+H_{3} O_{y}^{+}(a q)$
As $H C O_{3}$ is again a weak acid (weaker than $H_{2} C O_{3}$ )
with $x>>y$
$K_{2}=\frac{\left[c o_{3}^{2}\right]\left|H_{3} O^{+}\right|}{\left[H C o_{3}\right]}$
$=\frac{y \times(x+y)}{(x-y)}$
Note : $\left[H_{3} O^{+}\right]=H^{+}$ from first step $(x)$ and from second step $(y)=(x+y)$
$[\text { As } x>>y \text { so } x+y \simeq x \text { and } x-y \simeq x]$
So, $K_{2} \simeq \frac{y \times x}{x}=y$
$\Rightarrow K_{2}=4.8 \times 10^{-11}$
$y=y=\left[C O_{3}^{2}\right]$
So the concentration of $\left[H^{+}\right]=\left[H C O_{3}^{-}\right]=$ concentrations obtained from the first step. As the dissociation will be very low in second step so there will be no change in these concentrations. Thus the final concentrations are $\left[H^{+}\right]=\left[H C O_{3}^{-}\right]=1.195 \times 10^{-4}$
$\left[\mathrm{CO}_{3}^{2-}\right]=4.8 \times 10^{-11}$