In aqueous solution the ionization constants for carbonic acid are
$K_1 = 4.2 \times 10^{-7}$ and $K_2 = 4.8 \times 10^{-11}$
Select the correct statement for a saturated $0.034\, M$ solution of the carbonic acid.
The concentration of $CO_3^{2-}$ is $0.034\, M.$
The concentration of $CO_3^{2-}$ is greater than that of $HCO_3^-.$
The concentrations of $H^+$ and $HCO_3^-$ are approximately equal.
The concentration of $H^+$ is double that of $CO_3^{2-}.$
Calculate the $pH$ of a $0.10 \,M$ ammonia solution. Calculate the pH after $50.0 \,mL$ of this solution is treated with $25.0 \,mL$ of $0.10 \,M$ $HCl$. The dissociation constant of ammonia, $K_{b}=1.77 \times 10^{-5}$
Degree of dissociation of $0.1\,N\,\,C{H_3}COOH$ is (Dissociation constant $ = 1 \times {10^{ - 5}}$)
What is the $ pH$ of $0.01\, M$ glycine solution? For glycine, $K{a_1} = 4.5 \times {10^{ - 3}}$ and $K{a_2} = 1.7 \times {10^{ - 10}}$ at $298 \,K$
If the dissociation constant of an acid $HA$ is $1 \times {10^{ - 5}},$ the $pH$ of a $ 0.1$ molar solution of the acid will be approximately
A weak base $MOH$ of $0.1\, N$ concentration shows a $pH$ value of $9$. What is the percentage degree of ionisation of the base ? ......$\%$