મિલિકનના ઑઇલ ડ્રોપ પ્રયોગમાં $2.0 \times 10^{-5}\, m$ ત્રિજ્યા અને $1.2 \times 10^3 \,kg \,m ^{-3}$ ઘનતા ધરાવતા બુંદ (drop)નો અંતિમ (terminal) વેગ કેટલો હશે ? પ્રયોગના તાપમાને હવાની શ્યાનતા $1.8 \times 10^{-5}\, Pa\, s$ લો. તે ઝડપે બુંદ પરનું શ્યાનતા બળ કેટલું હશે ? (હવાને લીધે બુંદનું ઉત્પ્લવાન અવગણો.)
Terminal speed $=5.8 cm / s ;$ Viscous force $=3.9 \times 10^{-10} N$
Radius of the given uncharged drop, $r=2.0 \times 10^{-5} m$
Density of the uncharged drop, $\rho=1.2 \times 10^{3} kg m ^{-3}$
Viscosity of air, $\eta=1.8 \times 10^{-5} Pa s$
Density of air $\left(\rho_{o}\right)$ can be taken as zero in order to neglect buoyancy of air.
Acceleration due to gravity, $g=9.8 m / s ^{2}$
Terminal velocity ( $v$ ) is given by the relation
$v=\frac{2 r^{2} \times\left(\rho-\rho_{0}\right) g }{9 \eta}$
$=\frac{2 \times\left(2.0 \times 10^{-5}\right)^{2}\left(1.2 \times 10^{3}-0\right) \times 9.8}{9 \times 1.8 \times 10^{-3}}$
$=5.807 \times 10^{-2} m s ^{-1}$
$=5.8 cms ^{-1}$
Hence, the terminal speed of the drop is $5.8 cm s ^{-1}$ The viscous force on the drop is given by:
$F=6 \pi \eta r v$
$\therefore F=6 \times 3.14 \times 1.8 \times 10^{-5} \times 2.0 \times 10^{-5} \times 5.8 \times 10^{-2}$
$=3.9 \times 10^{-10} N$
Hence, the viscous force on the drop is $3.9 \times 10^{-10} \,N$
ટર્મિનલ વેગ કઈ બાબત પર આધારિત છે ? તે જાણવો ?
પાણીનું તાપમાન વધારતાં,તેનો શ્યાનતા ગુણાંક
$M$ દળ ધરાવતા અને $d$ જેટલી ઘનતા ધરાવતા એક નાના બોલ (દડા) ને, ગ્લીસરીન ભરેલા પાત્રમાં પતન કરવામાં આવે છે ત્યારે તેની ઝડપ અમુક સમય બાદ અચળ થાય છે. જે ગ્લિસરીનની ધનતા $\frac{\mathrm{d}}{2}$ જેટલી હોય તો દડા પર લાગતું સ્નિગ્ધતા (શ્યાનતા) બળ $....$ હશે.
તરલના $m$ અને $r$ ત્રિજ્યા ધરાવતા બુંંદો ઉચ્ચતમ ઊંચાઈએથી પડે છે તો તેનો વેગ નીચે કોના મુજબ સમપ્રમાણમાં છે ?
ગોળાકાર વરસાદના ટીપાંનો અંતિમ (ટર્મીનલ) વેગ ($v_t$) ધણાં બધા પ્રાચલો ઉપર આધાર રાખે છે. પરંતુ $\left(v_{t}\right)$ નો ગોળાકાર વરસાદના ટીપાંની ત્રિજ્યા $(r)$ સાથેનો ફેરફાર......... પર આધાર રાખે છે.