$a$ બાજુ ધરાવતા ઘનમાં, ફલક (સપાટી) $ABOD$ ના કેન્દ્ર આગળથી ફલક $BEFO$ ના કેન્દ્ર સુધી (આકૃતિમાં દર્શાવ્યા અનુસાર) દોરેલ સદિશ કયો હશે.
$\frac{1}{2}\,a\,\left( {\hat k - \hat i} \right)$
$\frac{1}{2}\,a\,\left( {\hat i - \hat k} \right)$
$\frac{1}{2}\,a\,\left( {\hat j - \hat i} \right)$
$\frac{1}{2}\,a\,\left( {\hat j - \hat k} \right)$
$F$ અને $2F$ બળોનું પરિણામી એ $F$ ને લંબ છે.તો બે બળ વચ્ચેનો ખૂણો ........ $^o$ હશે.
બે સદિશો $\mathop A\limits^ \to $ અને $\mathop B\limits^ \to $ વચ્ચેનો ખૂણો $\theta $ કેટલો હોવો જોઈએ જેથી પરિણામી સદિશ નું મૂલ્ય લઘુતમ મળે.
જો બે સદીશોના સરવાળાનું મૂલ્ય એ તેમની બાદબાકીના મૂલ્ય બરાબર હોય, તો આ બે સદીશો વચ્ચેનો ખૂણો ($^o$ માં) કેટલો હશે?
સદિશોના સરવાળા માટે ત્રિકોણની રીત (શીર્ષથી પુચ્છ રીત) સમજાવો.
જો $\mathop {\,{\rm{A}}}\limits^ \to \,\, + \;\,\mathop {\rm{B}}\limits^ \to \,\, = \,\mathop {\rm{C}}\limits^ \to $ અને $ {\rm{A}}\,\, + \;\,{\rm{B}}\,\, = \,\,{\rm{C}}\,$ હોય $\vec A $ અને $\vec B $ વચ્ચેનો ખૂણો કેટલો થાય .