- Home
- Standard 11
- Mathematics
10-2. Parabola, Ellipse, Hyperbola
hard
Let an ellipse with centre $(1,0)$ and latus rectum of length $\frac{1}{2}$ have its major axis along $x$-axis. If its minor axis subtends an angle $60^{\circ}$ at the foci, then the square of the sum of the lengths of its minor and major axes is equal to $...........$.

A
$9$
B
$8$
C
$7$
D
$6$
(JEE MAIN-2023)
Solution
$\text { L.R. }=\frac{2 b^2}{a}=\frac{1}{2}$
$4 b^2=a…….(i)$
$\text { Ellipse } \frac{(x-1)^2}{a^2}+\frac{y^2}{b^2}=1$
$m_{B_2 F_1}=\frac{1}{\sqrt{3}}$
$\frac{b}{a}=\frac{1}{\sqrt{3}}$
$3 b^2=a^2 e^2=a^2-b^2$
$4 b^2=a^2……..(ii)$
$\text { From (i) and (ii) }$
$a=a^2$
$\therefore a=1$
$b^2=\frac{1}{4}$
$((2 a)+(2 b))^2=9$
Standard 11
Mathematics