10-2. Parabola, Ellipse, Hyperbola
hard

Let an ellipse with centre $(1,0)$ and latus rectum of length $\frac{1}{2}$ have its major axis along $x$-axis. If its minor axis subtends an angle $60^{\circ}$ at the foci, then the square of the sum of the lengths of its minor and major axes is equal to $...........$.

A

$9$

B

$8$

C

$7$

D

$6$

(JEE MAIN-2023)

Solution

$\text { L.R. }=\frac{2 b^2}{a}=\frac{1}{2}$

$4 b^2=a…….(i)$

$\text { Ellipse } \frac{(x-1)^2}{a^2}+\frac{y^2}{b^2}=1$

$m_{B_2 F_1}=\frac{1}{\sqrt{3}}$

$\frac{b}{a}=\frac{1}{\sqrt{3}}$

$3 b^2=a^2 e^2=a^2-b^2$

$4 b^2=a^2……..(ii)$

$\text { From (i) and (ii) }$

$a=a^2$

$\therefore a=1$

$b^2=\frac{1}{4}$

$((2 a)+(2 b))^2=9$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.