${\left( {\frac{a}{x} + bx} \right)^{12}}$ ના વિસ્તરણમાં $x^{-10}$ સહગુણક મેળવો.
$12{a^{11}}$
$12{b^{11}}a$
$12{a^{11}}b$
$12{a^{11}}{b^{11}}$
$\left(2^{1 / 3}+3^{1 / 4}\right)^{12}$ ના વિસ્તરણમાં સંમેય પદોનો સરવાળો મેળવો.
દ્રીપદી ${(1 + ax)^n}$ $(n \ne 0)$ ના વિસ્તરણમાં પ્રથમ ત્રણ પદો $1, 6x$ અને $16x^2$ હોય, તો $a$ અને $n$ ની કિમત અનુક્રમે . . . . થાય.
જો બહુપદી ${\left[ {\frac{1}{{\sqrt {5{x^3} + 1} - \sqrt {5{x^3} - 1} }}} \right]^8} $$+ {\left[ {\frac{1}{{\sqrt {5{x^3} + 1} + \sqrt {5{x^3} - 1} }}} \right]^8}$ ની ઘાત $n$ અને $x^{12}$ નો સહગુણક $m$ હોય તો $(n, m)$ = .................
${\left( {\frac{{4{x^2}}}{3}\; - \;\frac{3}{{2x}}} \right)^9}$ ના વિસ્તરણમાં $x^6$ નો સહગુણક મેળવો
$(1 + x + 2{x^3}){\left( {\frac{3}{2}{x^2} - \frac{1}{{3x}}} \right)^9}$ ના વિસ્તરણમાં અચળપદ મેળવો.