જો ${(1 + x)^{2n}}$ અને ${(1 + x)^{2n - 1}}$ ની વિસ્તરણમાં $A$ અને $B$ એ ${x^n}$ ના સહગુણક હોય તો . . . .
$A = B$
$A = 2B$
$2A = B$
એકપણ નહીં.
ધારોકે $\left(x-\frac{3}{x^2}\right)^n, x \neq 0 . n \in N$ ના વિસ્તરણમાં પ્રથમ ત્રણ પદોના સહગુણકોનો સરવાળો $376$ છે. તો $x^4$ નો સહગુણક $..........$ છે.
${\left( {x - \frac{1}{x}} \right)^7}$ ના વિસ્તરણમાં ${x^{3}}$ નો સહગુણક મેળવો.
$(1 + x + 2{x^3}){\left( {\frac{3}{2}{x^2} - \frac{1}{{3x}}} \right)^9}$ ના વિસ્તરણમાં અચળપદ મેળવો.
${\left( {\frac{{x + 1}}{{{x^{2/3}} - {x^{\frac{1}{3}}} + 1\;}}--\frac{{x - 1}}{{x - {x^{1/2}}}}} \right)^{10}}$ના વિસ્તરણમાં અચળ પદ મેળવો.
પ્રાકૃતિક સંખ્યા $m$ ની કઈ કિમત માટે $\left( x ^{ m }+\frac{1}{ x ^{2}}\right)^{22}$ ના વિસ્તરણમાં $x$ નો સહગુણક $1540$ થાય