7.Binomial Theorem
hard

${(1 + 3x + 2{x^2})^6}$ ના વિસ્તરણમાં ${x^{11}}$ નો સહગુણક મેળવો.

A

$144$

B

$288$

C

$216$

D

$576$

Solution

(d) ${(1 + 3x + 2{x^2})^6}$ = ${[1 + x(3 + 2x)]^6}$

= $1 + {\,^6}{C_1}x(3 + 2x){ + ^6}{C_2}{x^2}{(3 + 2x)^2}$${ + ^6}{C_3}{x^3}{(3 + 2x)^3}{ + ^6}{C_4}{x^4}{(3 + 2x)^4}$ ${ + ^6}{C_5}{x^5}{(3 + 2x)^5}{ + ^6}{C_6}{x^6}{(3 + 2x)^6}$

Only ${x^{11}}$ gets from $^6{C_6}{x^6}{(3 + 2x)^6}$

$\therefore $ $^6{C_6}{x^6}{(3 + 2x)^6} = \,{x^6}{(3 + 2x)^6}$

$\therefore $ Coefficient of ${x^{11}}$ = $^6{C_5}{3.2^5} = 576$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.