બતાવો કે $(1+x)^{2 n}$ ના વિસ્તરણના મધ્યમ પદનો સહગુણક એ $(1+x)^{2 n-1}$ ના વિસ્તરણનાં મધ્યમ પદોના સહગુણકોના સરવાળા જેટલો છે.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

As $2 n$ is even so the expansion $(1+x)^{2 n}$ has only one middle term which is
$\left(\frac{2 n}{2}+1\right)^{\text {th }}$ i.e., $(n+1)^{\text {th }}$ term.

The $(n+1)^{\text {th }}$ term is $^{2 n} C_{n} x^{n}$. The coefficient of $x^{n}$ is $^{2 n} C_{n}$

Similarly, $(2 n-1)$ being odd, the other expansion has two middle terms,

$\left(\frac{2 n-1+1}{2}\right)^{ th }$ and $\left(\frac{2 n-1+1}{2}+1\right)^{ th }$ i.e., $n^{ th }$ and $(n+1)^{ th }$ terms. The coefficients of  these terms are $^{2n - 1}{C_{n - 1}}$ and $^{2n - 1}{C_n},$ respectively.

$^{2n - 1}{C_{n - 1}} + {\,^{2n - 1}}{C_n} = {\,^{2n}}{C_n}$      [ As ${^n{C_{r - 1}} + {\,^n}{C_r} = {\,^{n + 1}}{C_r}}$ ] as required.

Similar Questions

ધારોકે $\left(x^{\frac{2}{3}}+\frac{2}{x^3}\right)^{30}$ના વિસ્તરણમાં $x^{-\alpha}$ વાળો પદ હોય તેવો $\alpha > 0$ નાનામાં નાની સંખ્યા $\beta x^{-\alpha}, \beta \in N$ છે. તો $\alpha$ ની  કિમંત મેળવો.

  • [JEE MAIN 2023]

 $(1+ x)(1- x)^{10} (1+ x + x^2 )^9$  ના વિસ્તરણમાં $x^{18}$ નો સહગુણક મેળવો.

  • [JEE MAIN 2019]

${\left( {x + \frac{1}{{2x}}} \right)^{2n}}$ ના વિસ્તરણમાં મધ્યમપદ મેળવો.

મધ્યમ પદ શોધો : $\left(3-\frac{x^{3}}{6}\right)^{7}$

$n$ ની ન્યૂનતમ કિમંત મેળવો કે જેથી દ્રીપદી વિસ્તરણમાં $(\sqrt[3]{7}+\sqrt[12]{11})^{ n }$ માં પૃણાંક પદોની સંખ્યા  $183$ મળે.

  • [JEE MAIN 2025]