The value of $\sum_{ r =0}^{6}\left({ }^{6} C _{ r }{ }^{-6} C _{6- r }\right)$ is equal to :
$1124$
$1134$
$1024$
$924$
In the expansion of
$(2x + 1).(2x + 5) . (2x + 9) . (2x + 13)...(2x + 49),$ find the coefficient of $x^{12}$ is :-
Let $(1+2 x)^{20}=a_0+a_1 x+a_2 x^2+\ldots+a_{20} x^{20}$.Then $3 a_0+2 a_1+3 a_2+2 a_3+3 a_4+2 a_5+\ldots+2 a_{19}+3 a_{20}$ equals
Coefficient of $x^{19}$ in the polynomial $(x-1) (x-2^1) (x-2^2) .... (x-2^{19})$ is
If ${\sum\limits_{i = 1}^{20} {\left( {\frac{{{}^{20}{C_{i - 1}}}}{{{}^{20}{C_i} + {}^{20}{C_{i - 1}}}}} \right)} ^3}\, = \frac{k}{{21}}$, then $k$ equals
Suppose $\sum \limits_{ r =0}^{2023} r ^{20023} C _{ r }=2023 \times \alpha \times 2^{2022}$. Then the value of $\alpha$ is $............$