- Home
- Standard 11
- Mathematics
7.Binomial Theorem
hard
જો $\frac{1}{n+1}{ }^n C_n+\frac{1}{n}{ }^n C_{n-1}+\ldots+\frac{1}{2}{ }^{ n } C _1+{ }^{ n } C _0=\frac{1023}{10}$ હોય,તો $n=..........$
A
$6$
B
$9$
C
$8$
D
$7$
(JEE MAIN-2023)
Solution
$\sum \limits_{ r =0}^{ n } \frac{{ }^{ n } C_{ r }}{ r +1}=\frac{1}{ n +1} \sum \limits_{ r =0}^{ n }{ }^{ n +1} C_{ r +1}$
$=\frac{1}{ n +1}\left(2^{ n +1}-1\right)=\frac{1023}{10}$
$n +1=10 \Rightarrow n =9$
Standard 11
Mathematics