$\left( {\left( {\begin{array}{*{20}{c}}
{21}\\
1
\end{array}} \right) - \left( {\begin{array}{*{20}{c}}
{10}\\
1
\end{array}} \right)} \right) + \left( {\left( {\begin{array}{*{20}{c}}
{21}\\
2
\end{array}} \right) - \left( {\begin{array}{*{20}{c}}
{10}\\
2
\end{array}} \right)} \right)$$ + \left( {\left( {\begin{array}{*{20}{c}}
{21}\\
3
\end{array}} \right) - \left( {\begin{array}{*{20}{c}}
{10}\\
3
\end{array}} \right)} \right) + \;.\;.\;.$$ + \left( {\left( {\begin{array}{*{20}{c}}
{21}\\
{10}
\end{array}} \right) - \left( {\begin{array}{*{20}{c}}
{10}\\
{10}
\end{array}} \right)} \right) = $

  • [JEE MAIN 2017]
  • A

    ${2^{20}} - {2^{10}}$

  • B

    ${2^{21}} - {2^{11}}$

  • C

    ${2^{21}} - {2^{10}}$

  • D

    ${2^{20}} - {2^9}$

Similar Questions

Let $a =$ Minimum $\{x^2 + 2x + 3, x \in R\}$ and $b = \mathop {\lim }\limits_{\theta  \to 0} \frac{{1 - \cos \theta }}{{{\theta ^2}}}$ The value of $\sum\limits_{r = 0}^n {{a^r}.{b^{n - r}}} $ is

The value of $\frac{{{C_1}}}{2} + \frac{{{C_3}}}{4} + \frac{{{C_5}}}{6} + .....$ is equal to

If ${\left( {1 + x} \right)^n} = {c_0} + {c_1}x + {c_2}{x^2} + {c_3}{x^3} + ...... + {c_n}{x^n}$ , then the value of ${c_0} - 3{c_1} + 5{c_2} - ........ + {( - 1)^n}\,(2n + 1){c_n}$ is

If the sum of the coefficients of all the positive powers of $x$, in the binomial expansion of $\left(x^{n}+\frac{2}{x^{5}}\right)^{7}$ is $939 ,$ then the sum of all the possible integral values of $n$ is

  • [JEE MAIN 2022]

The number of terms in the expansion of $(1 +x)^{101}  (1 +x^2 - x)^{100}$ in powers of $x$ is

  • [JEE MAIN 2014]