Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
$\sqrt{\frac{1+\sin A }{1-\sin A }}=\sec A +\tan A$
$\sqrt{\frac{1+\sin A }{1-\sin A }}=\sec A +\tan A$
$L.H.S.=\sqrt{\frac{1+\sin A }{1-\sin A }}$
$=\sqrt{\frac{(1+\sin A )(1+\sin A )}{(1-\sin A )(1+\sin A )}}$
$=\frac{(1+\sin A )}{\sqrt{1-\sin ^{2} A }}=\frac{1+\sin A }{\sqrt{\cos ^{2} A }}$
$=\frac{1+\sin A }{\cos A } \quad=\sec A +\tan A$
$= R . H.S.$
In $\triangle PQR ,$ right $-$ angled at $Q , PR + QR =25\, cm$ and $PQ =5\, cm .$ Determine the values of $\sin P, \cos P$ and $\tan P$.
Evaluate the following:
$2 \tan ^{2} 45^{\circ}+\cos ^{2} 30^{\circ}-\sin ^{2} 60^{\circ}$
Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
$\frac{\cos A-\sin A+1}{\cos A+\sin A-1}=\operatorname{cosec} A+\cot A,$ using the identity $\operatorname{cosec}^{2} A=1+\cot ^{2} A$
Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
$(\operatorname{cosec} \theta-\cot \theta)^{2}=\frac{1-\cos \theta}{1+\cos \theta}$
Evaluate the following:
$\frac{5 \cos ^{2} 60^{\circ}+4 \sec ^{2} 30^{\circ}-\tan ^{2} 45^{\circ}}{\sin ^{2} 30^{\circ}+\cos ^{2} 30^{\circ}}$