Prove the following identities, where the angles involved are acute angles for which the expressions are defined.

$\sqrt{\frac{1+\sin A }{1-\sin A }}=\sec A +\tan A$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$\sqrt{\frac{1+\sin A }{1-\sin A }}=\sec A +\tan A$

$L.H.S.=\sqrt{\frac{1+\sin A }{1-\sin A }}$

$=\sqrt{\frac{(1+\sin A )(1+\sin A )}{(1-\sin A )(1+\sin A )}}$

$=\frac{(1+\sin A )}{\sqrt{1-\sin ^{2} A }}=\frac{1+\sin A }{\sqrt{\cos ^{2} A }}$

$=\frac{1+\sin A }{\cos A } \quad=\sec A +\tan A$

$= R . H.S.$

Similar Questions

In $\triangle PQR ,$ right $-$ angled at $Q , PR + QR =25\, cm$ and $PQ =5\, cm .$ Determine the values of $\sin P, \cos P$ and $\tan P$.

Evaluate the following:

$2 \tan ^{2} 45^{\circ}+\cos ^{2} 30^{\circ}-\sin ^{2} 60^{\circ}$

Prove the following identities, where the angles involved are acute angles for which the expressions are defined.

$\frac{\cos A-\sin A+1}{\cos A+\sin A-1}=\operatorname{cosec} A+\cot A,$ using the identity $\operatorname{cosec}^{2} A=1+\cot ^{2} A$

Prove the following identities, where the angles involved are acute angles for which the expressions are defined.

$(\operatorname{cosec} \theta-\cot \theta)^{2}=\frac{1-\cos \theta}{1+\cos \theta}$

Evaluate the following:

$\frac{5 \cos ^{2} 60^{\circ}+4 \sec ^{2} 30^{\circ}-\tan ^{2} 45^{\circ}}{\sin ^{2} 30^{\circ}+\cos ^{2} 30^{\circ}}$