Prove the following identities, where the angles involved are acute angles for which the expressions are defined.

$\sqrt{\frac{1+\sin A }{1-\sin A }}=\sec A +\tan A$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$\sqrt{\frac{1+\sin A }{1-\sin A }}=\sec A +\tan A$

$L.H.S.=\sqrt{\frac{1+\sin A }{1-\sin A }}$

$=\sqrt{\frac{(1+\sin A )(1+\sin A )}{(1-\sin A )(1+\sin A )}}$

$=\frac{(1+\sin A )}{\sqrt{1-\sin ^{2} A }}=\frac{1+\sin A }{\sqrt{\cos ^{2} A }}$

$=\frac{1+\sin A }{\cos A } \quad=\sec A +\tan A$

$= R . H.S.$

Similar Questions

State whether the following are true or false. Justify your answer.

The value of $\cos \theta$ increases as $\theta$ increases

Evaluate the following:

$\sin 60^{\circ} \cos 30^{\circ}+\sin 30^{\circ} \cos 60^{\circ}$

$9 \sec ^{2} A-9 \tan ^{2} A=..........$

If $\sin 3 A =\cos \left( A -26^{\circ}\right),$ where $3 A$ is an acute angle, find the value of $A= . . . . ^{\circ}$.

Consider $\triangle ACB$, right-angled at $C$, in which $AB =29$ units, $BC =21$ units and $\angle ABC =\theta$ (see $Fig.$). Determine the values of

$(i)$ $\cos ^{2} \theta+\sin ^{2} \theta$

$(ii)$ $\cos ^{2} \theta-\sin ^{2} \theta$