त्रिभुज $ABC$ में, जिसका कोण $B$ समकोण है, यदि $\tan A =\frac{1}{\sqrt{3}}$, तो निम्नलिखित के मान ज्ञात कीजिए:
$(i)$ $\sin A \cos C+\cos A \sin C$
$(ii)$ $\cos A \cos C-\sin A \sin C$
$\tan A =\frac{1}{\sqrt{3}}$
$\frac{ BC }{ AB }=\frac{1}{\sqrt{3}}$
If $B C$ is $k$, then $A B$ will be $\sqrt{3} k,$ where $k$ is a positive integer.
$\ln \triangle ABC ,$
$-A C^{2}=A B^{2}+B C^{2}$
$(\sqrt{3} k)^{2}+(k)^{2}$
$=3 k^{2}+k^{2}=4 k^{2}$
$AC =2 k$
$\sin A=\frac{\text { Side opposite to } \angle A }{\text { Hypotenuse }}=\frac{ BC }{ AC }=\frac{k}{2 k}=\frac{1}{2}$
$\cos A=\frac{\text { Side adjacent to } \angle A }{\text { Hypotenuse }}=\frac{ AB }{ AC }=\frac{\sqrt{3} k}{2 k}=\frac{\sqrt{3}}{2}$
$\sin C=\frac{\text { Side opposite to } \angle C }{\text { Hypotenuse }}=\frac{ AB }{ AC }=\frac{\sqrt{3} k}{2 k}=\frac{\sqrt{3}}{2}$
$\cos C=\frac{\text { Side adjacent to } \angle C }{\text { Hypotenuse }}=\frac{ BC }{ AC }=\frac{k}{2 k}=\frac{1}{2}$
$(i)$ $\sin A \cos C+\cos A \sin C$
$=\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)+\left(\frac{\sqrt{3}}{2}\right)\left(\frac{\sqrt{3}}{2}\right)=\frac{1}{4}+\frac{3}{4}$
$=\frac{4}{4}=1$
$(ii)$ $\cos A \cos C-\sin A \sin C$
$=\left(\frac{\sqrt{3}}{2}\right)\left(\frac{1}{2}\right)-\left(\frac{1}{2}\right)\left(\frac{\sqrt{3}}{2}\right)=\frac{\sqrt{3}}{4}-\frac{\sqrt{3}}{4}=0$
निम्नलिखित के मान निकालिए :
$\frac{\sin 30^{\circ}+\tan 45^{\circ}-\operatorname{cosec} 60^{\circ}}{\sec 30^{\circ}+\cos 60^{\circ}+\cot 45^{\circ}}$
बताइए कि निम्नलिखित सत्य हैं या असत्य हैं। कारण सहित अपने उत्तर की पुष्टि कीजिए।
$\theta$ में वृद्धि होने के साथ $\cos \theta$ के मान में भी वृद्धि होती है।
यदि $\sin ( A - B )=\frac{1}{2}, \cos ( A + B )=\frac{1}{2}, 0^{\circ}< A + B \leq 90^{\circ}, A > B ,$ तो $A$ और $B$ ज्ञात कीजिए
निम्नलिखित का मान निकालिए:
$\frac{\tan 26^{\circ}}{\cot 64^{\circ}}$
बताइए कि निम्नलिखित सत्य हैं या असत्य हैं। कारण सहित अपने उत्तर की पुष्टि कीजिए।
$\sin ( A + B )=\sin A +\sin B$