Evaluate the following:
$2 \tan ^{2} 45^{\circ}+\cos ^{2} 30^{\circ}-\sin ^{2} 60^{\circ}$
$4$
$2$
$3$
$1$
Evaluate the following:
$\sin 60^{\circ} \cos 30^{\circ}+\sin 30^{\circ} \cos 60^{\circ}$
If $\angle A$ and $\angle B$ are acute angles such that $\cos A =\cos B ,$ then show that $\angle A =\angle B$.
Prove that $\frac{\cot A-\cos A}{\cot A+\cos A}=\frac{\operatorname{cosec} A-1}{\operatorname{cosec} A+1}$
$\sin 2 A=2 \sin A$ is true when $A=$
Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
$\sqrt{\frac{1+\sin A }{1-\sin A }}=\sec A +\tan A$