ત્રિકોણ $ABC$ માટે , $\sin 2A + \sin 2B + \sin 2C = . . ..$
$4\sin A.\,\sin B.\,\sin C$
$4\cos A.\,\cos B.\,\cos C$
$2\cos A.\,\cos B.\,\cos C$
$2\sin A.\,\sin B.\,\,\sin C$
$\tan 20^\circ \tan 40^\circ \tan 60^\circ \tan 80^\circ = $
$\cos A + \cos (240^\circ + A) + \cos (240^\circ - A) = $
જો $cosA + cosB = cosC,\ sinA + sinB = sinC$ હોય તો સમીકરણ $\frac{{\sin \left( {A + B} \right)}}{{\sin 2C}}$ =
${\sin ^4}\frac{\pi }{8} + {\sin ^4}\frac{{3\pi }}{8} + {\sin ^4}\frac{{5\pi }}{8} + {\sin ^4}\frac{{7\pi }}{8} = $
$\tan 75^\circ - \cot 75^\circ = $