3.Trigonometrical Ratios, Functions and Identities
easy

ત્રિકોણ $ABC$ માટે , $\sin 2A + \sin 2B + \sin 2C  = . . ..$

A

$4\sin A.\,\sin B.\,\sin C$

B

$4\cos A.\,\cos B.\,\cos C$

C

$2\cos A.\,\cos B.\,\cos C$

D

$2\sin A.\,\sin B.\,\,\sin C$

Solution

(a) We know that $A + B + C = 180^\circ $ (in $\Delta ABC$)

Now, $\sin 2A + \sin 2B + \sin 2C$

$ = 2\sin (A + B)\cos (A – B) + 2\sin C\cos C$

$ = 2\sin (\pi – C)\cos (A – B) + 2\sin C\cos (\pi – \overline {A + B} )$

$ = 2\sin C\cos (A – B) – 2\sin C\cos (A + B)$

$ = 2\sin C\{ \cos (A – B) – \cos (A + B)\} $

$ = 2\sin C\{ 2\sin A\sin B\} = 4\sin A\sin B\sin C$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.