In triangle $ABC$, the value of $\sin 2A + \sin 2B + \sin 2C$ is equal to

  • A

    $4\sin A.\,\sin B.\,\sin C$

  • B

    $4\cos A.\,\cos B.\,\cos C$

  • C

    $2\cos A.\,\cos B.\,\cos C$

  • D

    $2\sin A.\,\sin B.\,\,\sin C$

Similar Questions

If $A$ lies in the third quadrant and $3\ tanA - 4 = 0$ , then find the value of $5\ sin\ 2A + 3\  sinA + 4\  cosA$

If $2\sec 2\alpha = \tan \beta + \cot \beta ,$ then one of the values of $\alpha + \beta $ is

Show that

$\tan 3 x \tan 2 x \tan x=\tan 3 x-\tan 2 x-\tan x$

The value of $cos\, \frac{\pi }{{10}} \,cos\, \frac{2\pi }{{10}} \,cos\,\frac{4\pi }{{10}}\, cos\,\frac{8\pi }{{10}}\, cos\,\frac{16\pi }{{10}}$ is 

If $A + B + C = \frac{{3\pi }}{2},$ then $\cos 2A + \cos 2B + \cos 2C = $