In triangle $ABC$, the value of $\sin 2A + \sin 2B + \sin 2C$ is equal to
$4\sin A.\,\sin B.\,\sin C$
$4\cos A.\,\cos B.\,\cos C$
$2\cos A.\,\cos B.\,\cos C$
$2\sin A.\,\sin B.\,\,\sin C$
If $A$ lies in the third quadrant and $3\ tanA - 4 = 0$ , then find the value of $5\ sin\ 2A + 3\ sinA + 4\ cosA$
If $2\sec 2\alpha = \tan \beta + \cot \beta ,$ then one of the values of $\alpha + \beta $ is
Show that
$\tan 3 x \tan 2 x \tan x=\tan 3 x-\tan 2 x-\tan x$
The value of $cos\, \frac{\pi }{{10}} \,cos\, \frac{2\pi }{{10}} \,cos\,\frac{4\pi }{{10}}\, cos\,\frac{8\pi }{{10}}\, cos\,\frac{16\pi }{{10}}$ is
If $A + B + C = \frac{{3\pi }}{2},$ then $\cos 2A + \cos 2B + \cos 2C = $