In triangle $ABC$, the value of $\sin 2A + \sin 2B + \sin 2C$ is equal to

  • A

    $4\sin A.\,\sin B.\,\sin C$

  • B

    $4\cos A.\,\cos B.\,\cos C$

  • C

    $2\cos A.\,\cos B.\,\cos C$

  • D

    $2\sin A.\,\sin B.\,\,\sin C$

Similar Questions

If $\sin \alpha = \frac{{ - 3}}{5},$ where $\pi < \alpha < \frac{{3\pi }}{2},$ then $\cos \frac{1}{2}\alpha = $

If $\tan x + \tan \left( {\frac{\pi }{3} + x} \right) + \tan \left( {\frac{{2\pi }}{3} + x} \right) = 3,$ then

If $\sin \theta + \sin 2\theta + \sin 3\theta = \sin \alpha $and $\cos \theta + \cos 2\theta + \cos 3\theta = \cos \alpha $, then $\theta$ is equal to

If $\cos \theta = \frac{1}{2}\left( {a + \frac{1}{a}} \right),$then the value of $\cos 3\theta $is

If $2\sec 2\alpha = \tan \beta + \cot \beta ,$ then one of the values of $\alpha + \beta $ is