$\cos \alpha .\sin (\beta - \gamma ) + \cos \beta .\sin (\gamma - \alpha ) + \cos \gamma .\sin (\alpha - \beta ) = $
$0$
$1/2$
$1$
$4\cos \alpha \cos \beta \cos \gamma $
જો $x = \cos 10^\circ \cos 20^\circ \cos 40^\circ ,$ તો $x =.....$
જો $a\,\cos 2\theta + b\,\sin 2\theta = c$ ના બીજ $\alpha$ અને $\beta$ હોય તો $\tan \alpha + \tan \beta = . . .$
જો $\cos \,(\theta - \alpha ) = a,\,\,\sin \,(\theta - \beta ) = b,\,\,$ તો ${\cos ^2}(\alpha - \beta ) + 2ab\,\sin \,(\alpha - \beta ) = . . . .$
$\sqrt {\frac{{1 - \sin A}}{{1 + \sin A}}} = $
$\frac{{\tan \,\,\left( {x\,\, - \,\,{\textstyle{\pi \over 2}}} \right)\,\,.\,\,\cos \,\,\left( {{\textstyle{{3\pi } \over 2}}\,\, + \,\,x} \right)\,\, - \,\,{{\sin }^3}\,\left( {{\textstyle{{7\pi } \over 2}}\,\, - \,\,x} \right)}}{{\cos \,\,\left( {x\,\, - \,\,{\textstyle{\pi \over 2}}} \right)\,\,.\,\,\tan \,\,\left( {{\textstyle{{3\pi } \over 2}}\,\, + \,\,x} \right)}}$ =