किसी वृत्त की समीकरण $\mathrm{x}^2+\mathrm{y}^2=\mathrm{a}^2$, हैं जहां $\mathrm{a}$ त्रिज्या है। मूलबिन्दु का मान $(0,0)$, से बदलने पर यदि समीकरण परिवर्तित होती है तो नए समीकरण $(x-A t)^2+\left(y-\frac{t}{B}\right)^2=a^2$ में $A$ एवं $B$ की सही विमाएं ज्ञात कीजिए। $t$ की विमाएं $\left[\mathrm{T}^{-1}\right]$ है।

  • [JEE MAIN 2023]
  • A

    $A =\left[ L ^{-1} T \right], B =\left[ LT ^{-1}\right]$

  • B

    $A =[ LT ], B =\left[ L ^{-1} T ^{-1}\right]$

  • C

    $A =\left[ L ^{-1} T ^{-1}\right], B =\left[ LT ^{-1}\right]$

  • D

    $A =\left[ L ^{-1} T ^{-1}\right], B =[ LT ]$

Similar Questions

एक राशि $f$ का सूत्र $f =\sqrt{\frac{ hc ^{5}}{ G }}$ है। यहाँ पर $c$ प्रकाश की गति $G$ सर्वव्यापी गुरूत्वाकर्षण स्थिरांक तथा $h$ प्लांक स्थिरांक है। $f$ की विमाएँ निम्न में से किसके समान है ?

  • [JEE MAIN 2020]

व्यंजक $P = \frac{\alpha }{\beta }{e^{ - \frac{{\alpha Z}}{{k\theta }}}}$ में $P$ दाब, $ Z$ दूरी, $k$ बोल्ट्जमैन स्थिरांक एवं तापक्रम दर्शाता है तो का विमीय सूत्र होगा

  • [IIT 2004]

समीकरण, बल $ = \frac{X}{{{\rm{Density}}}}$ में भौतिक राशि $X$ की विमा है

$A, B, C$ तथा $D$ चार भिन्न मात्राएँ हैं जिनकी विमाएं भिन्न हैं। कोई भी मात्रा विमा-रहित मात्रा नहीं हैं, लेकिन $A D=C \ln (B D)$ सत्य है। तब निम्न में से कौन आशय-रहित मात्रा है ?

  • [JEE MAIN 2016]

एक अतिभारी ब्लैक होल (black hole), जिसका द्रव्यमान $m$ एवं त्रिज्या $R$ है, $\omega$ कोणीय वेग से चक्रण (spin) कर रहा है । यदि इसके द्वारा गुरूत्वीय तरंग (gravitational waves) के रूप में' विकिरित शक्ति $P$ का मान $P=G c^{-5} m^x R^y \omega^z$ है, जहाँ $c$ एवं $G$ क्रमशः प्रकाश का निर्वात में चाल और सार्वत्रिक गुरूत्वीय नियतांक है, तो

  • [KVPY 2017]