5. Continuity and Differentiation
normal

આપલે પૈકી ક્યૂ વિધેય રોલના પ્રમેયનું પાલન કરે છે ?

A

$f(x) = \left\{ \begin{array}{l} x,\,\,\,\,\,\,\,0 \le x < 1\\ 0,\,\,\,\,\,\,\,x = 0\,\,\,\,\,\, \end{array} \right.on\,\,\left[ {0,1} \right]$

B

$f(x) = \left\{ \begin{array}{l} \frac{{\sin x}}{x},\,\,\,\,\,\,\, - \pi  \le x < 0\\ 0,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x = 0\,\,\,\,\,\, \end{array} \right.on\,\,\left[ { - \pi ,0} \right]$

C

$f(x) = \frac{{{x^2} - x - 6}}{{x - 1}}\,\,\,\,\,on\left[ { - 2,3} \right]$

D

$f(x) = \left\{ \begin{array}{l} \frac{{{x^3} - 2{x^2} + 5x + 6}}{{x - 1}},\,\,\,\,if\,\,x \ne 0\,\,\,\,\,\,\\  - 6,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,if\,\,x = 1\,\,\,\,\,\,\,\,\,\,\,\,\ \end{array} \right.on\left[ {-2,3} \right]$

Solution

$f(x)=a x^{3}+b x^{2}+11 x-6$

satisfies conditions of Rolle's theorem in $[1,3] .$

Therefore,

$f(1)=f(3)$

or $a+b+11-6=27 a+9 b+33-6$

or $13 a+4 b=-11$        …….$(1)$

and $f'(x)=3 a x^{2}+2 b x+11$

or  $f'\left( {2 + \frac{1}{{\sqrt 3 }}} \right) = 3a{\left( {2 + \frac{1}{{\sqrt 3 }}} \right)^2} + 2b\left( {2 + \frac{1}{{\sqrt 3 }}} \right) + 11 = 0$

or $3 a\left(4+\frac{1}{3}+\frac{4}{\sqrt{3}}\right)+2 b\left(2+\frac{1}{\sqrt{3}}\right)+11=0$     …….$(2)$

From equations $(1)$ and $(2),$ we get $a=1, b=-6.$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.